

Lecture Notes in Computer Science 3764
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ted Herman Sébastien Tixeuil (Eds.)

Self-Stabilizing
Systems

7th International Symposium, SSS 2005
Barcelona, Spain, October 26-27, 2005
Proceedings

13

Volume Editors

Ted Herman
University of Iowa
Department of Computer Science
Iowa City, IA 52242, USA
E-mail: herman@cs.uiowa.edu

Sébastien Tixeuil
Université Paris-Sud
LRI
Bâtiment 490, 91405 Orsay Cedex, France
E-mail: tixeuil@lri.fr

Library of Congress Control Number: 2005934787

CR Subject Classification (1998): C.2.4, C.2, C.3, F.1, F.2.2, K.6

ISSN 0302-9743
ISBN-10 3-540-29814-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29814-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11577324 06/3142 5 4 3 2 1 0

Preface

Self-stabilization is an established principle of modern distributed system design.
The advantages of systems that self-recover from transient failures, temporary se-
curity attacks, and spontaneous reconfiguration are obvious. Less obvious is how
the ambitious goal of recovering from the most general case of a transient fault,
namely that of an arbitrary initial state, can lead to a simpler system design than
dealing with particular cases of failures. In the area of mathematical problem-
solving, Pólya gave the term “the inventors paradox” to such situations, where
generalizing the problem may simplify the solution. The dramatic growth of dis-
tributed systems, peer-to-peer distribution networks, and large grid computing
environments confronts designers with serious difficulties of complexity and has
motivated the call for systems that self-recover, self-tune, and self-manage. The
principles of self-stabilization can be useful for these goals of autonomous system
behavior.

The Symposium on Self-Stabilizing Systems (SSS) is the main forum for re-
search in the area of self-stabilization. Previous Workshops on Self-Stabilizing
Systems (WSS) were held in 1989, 1995, 1997, 1999, and 2001. The previous
Symposium on Self-Stabilizing Systems (SSS) took place in 2003. Thirty-three
papers were submitted to SSS 2005 by authors from Europe (16), North America
(8), Asia (4), and elsewhere (5). From the submissions, the program committee
selected 15 for inclusion in these proceedings. In addition to the presentation of
these papers, the symposium event included a poster session with brief presen-
tations of recent work on self-stabilization.

The technical contributions to the symposium this year showed that the area
has matured deeply since its first mathematical definition more than thirty years
ago. Although there remains a core of four “classical” self-stabilization papers
(that close gaps and open problems), the main part of the proceedings is ded-
icated to either extensions of self-stabilization (six contributions, dealing with
snap-stabilization, code stabilization, self-stabilization with either dynamic, faulty
or Byzantine components) or to applications of self-stabilization (five contribu-
tions, related to operating systems, security, or mobile and ad hoc networks).

The symposium of 2005 was one of the events of MANWEEK 2005, which also
included the International Conference on Management of Multimedia Networks
and Services (MMNS 2005), the International Workshop on IP Operations and
Management (IPOM 2005), and the IEEE/IFIP International Workshop on Au-
tonomic Grid Networking and Management (AGNM 2005). The site for the sym-
posium and the other conferences was the Universitat Politècnica de Catalunya,
in Barcelona. The SSS 2005 sessions were held on October 26 and 27.

We thank the organizers of MANWEEK 2005, especially Joan Serrat of the
Universitat Politècnica de Catalunya, for making local arrangements.

August 2005 Ted Herman
Sébastien Tixeuil

Organization

Steering Committee

Anish Arora, The Ohio State University
Ajoy K. Datta, University of Nevada at Las Vegas
Shlomi Dolev, Ben-Gurion University of the Negev
Sukumar Ghosh, University of Iowa
Mohamed G. Gouda, University of Texas at Austin
Ted Herman, University of Iowa
Shing-Tsaan Huang, National Central University, Taiwan
Vincent Villain, Université de Picardie

Program Committee

Jorge Cobb, University of Texas at Dallas
Pascal Felber, Université de Neuchâtel
Roy Friedman, Technion
Felix Gärtner, RWTH Aachen
Maria Gradinariu, IRISA / INRIA Rennes
Ted Herman (Chair), University of Iowa
Jaap-Henk Hoepman, Radboud University Nijmegen
Hirotsugu Kakugawa, Hiroshima University
Mikhail Nesterenko, Kent State University
Marina Papatriantafilou, Chalmers University
Manish Parashar, Rutgers University
Franck Petit, Université de Picardie
Srikanta Tirthapura, Iowa State University
Sébastien Tixeuil, Université Paris-Sud

Additional Reviewers
Doina Bein Christian Boulinier Praveen Danturi
Ken Calvert Thomas Clouser Murat Demirbas
Bertrand Ducourthial Ajoy Datta Martin Gairing
Stéphane Devismes Shlomi Dolev Yinnon Haviv
Sukumar Ghosh Mohamed Gouda Sayaka Kamei
Lisa Higham Shing-Tsaan Huang Boris Koldehofe
Ronen Kat Yoshiaki Katayama Xiaolin Li
Sandeep Kulkarni Mikel Larrea Stephane Messika
Toshimitsu Masuzawa Vincent Matossian Phillipe Raipin Parvedy
Yoshihiro Nakaminami Rajesh Patel Laurent Rosaz
Sriram Pemmaraju Michel de Rougemont Philippas Tsigas
Nir Tzachar Oliver Theel Chen Zhang
Vincent Villain Antonino Virgillito
Guangsen Zhang Anat Bremler-Bar

Table of Contents

Snap-Stabilizing Optimal Binary Search Tree
Doina Bein, Ajoy K. Datta, Vincent Villain . 1

Synchronous vs. Asynchronous Unison
Christian Boulinier, Franck Petit, Vincent Villain 18

A Snap-Stabilizing DFS with a Lower Space Requirement
Alain Cournier, Stéphane Devismes, Vincent Villain 33

Self-stabilization of Byzantine Protocols
Ariel Daliot, Danny Dolev . 48

Self-stabilization with r-Operators Revisited
Sylvie Delaët, Bertrand Ducourthial, Sébastien Tixeuil 68

Self-stabilization Preserving Compiler
Shlomi Dolev, Yinnon Haviv, Mooly Sagiv . 81

Self-stabilizing Mobile Node Location Management and Message
Routing

Shlomi Dolev, Limor Lahiani, Nancy Lynch, Tina Nolte 96

Memory Management for Self-stabilizing Operating Systems
Shlomi Dolev, Reuven Yagel . 113

Code Stabilization
Felix C. Freiling, Sukumar Ghosh . 128

Stabilizing Certificate Dispersal
Mohamed G. Gouda, Eunjin (EJ) Jung . 140

On the Possibility and the Impossibility of Message-Driven
Self-stabilizing Failure Detection

Martin Hutle, Josef Widder . 153

Approximation of Self-stabilizing Vertex Cover Less Than 2
Jun Kiniwa . 171

Self-stabilization in Spite of Frequent Changes of Networks: Case Study
of Mutual Exclusion on Dynamic Rings

Toshimitsu Masuzawa, Hirotsugu Kakugawa . 183

X Table of Contents

Towards Automatic Convergence Verification of Self-stabilizing
Algorithms

Jens Oehlerking, Abhishek Dhama, Oliver Theel 198

About the Self-stabilization of a Virtual Topology for Self-organization
in Ad Hoc Networks

Fabrice Theoleyre, Fabrice Valois . 214

Author Index . 229

Snap-Stabilizing Optimal Binary Search Tree

Doina Bein1, Ajoy K. Datta1, and Vincent Villain2

1 School of Computer Science, University of Nevada, Las Vegas
{siona, datta}@cs.unlv.edu

2 LaRIA,Université de Picardie Jules Verne, France
villain@laria.u-picardie.fr

Abstract. We present the first snap-stabilizing distributed binary
search tree (BST) algorithm. A snap-stabilizing algorithm guarantees
that the system always behaves according to its specification provided
some processor initiated the protocol. The maximum number of items
that can be stored at any time at any processor is constant (independent
of the size (n) of the network). Under this space constraint, we show a
lower bound of Ω(n) on the time complexity for the BST problem. We
then prove that starting from an arbitrary configuration where the nodes
have distinct internal values drawn from an arbitrary set, our algorithm
arranges them in a BST order in O(n) rounds. Therefore, our solution
is asymptotically optimal in time and takes O(n) rounds. A processor i
requires O(log si) bits of space where si is the size of the subtree rooted
at i. So, the root uses O(log n) bits. The proposed algorithm uses a heap
algorithm as a preprocessing step. This is also the first snap-stabilizing
distributed solution to the heap problem. The heap construction spends
O(h) (where h is the height of the tree) rounds. Its space requirement is
constant (independent of n). We then exploit the heap in the next phase
of the protocol. The root collects values in decreasing order and delivers
them to each node in the tree in O(n) rounds following a pipelined de-
livery order of sorted values in decreasing order.

Keywords:Binarysearchtree,heap,self-stabilization,snap-stabilization.

1 Introduction

Given a binary tree where every node holds one key (value) drawn from an
arbitrary set of real values, we design a snap-stabilizing distributed algorithm to
arrange the values in the tree to obtain a binary search tree. A self-stabilizing
[5,6] system, regardless of the initial states of the processors and initial messages
in the links, is guaranteed to converge to the intended behavior in finite time.
A snap-stabilizing [2,4] algorithm guarantees that it always behaves according
to its specification. In other words, a snap-stabilizing algorithm is also a self-
stabilizing algorithm which stabilizes in 0 steps.

The BST construction works as follows. First, the values in the tree are
re-arranged as a heap (we implement a MaxHeap but a MinHeap is equally
possible). Based on the heap arrangement, the root collects values in decreasing

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 1–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 D. Bein, A.K. Datta, and V. Villain

order and delivers them to each node in the tree (a sequential, pipelined delivery
of sorted values in decreasing order). The tree structure is not modified by our
algorithm.

Related Work: A heap construction that supports insert and delete operations
in arbitrary states over a variant of the standard binary heap [3] with the maxi-
mum capacity of K items is proposed in [8]. It takes O(m log K) heap operations
to stabilize (m is the initial number of items in the heap). The space complexity
per node i is O(hi) where hi is the height of the subtree Ti in the binary heap
rooted at node i. Stabilizing search 2-3 trees are investigated in [9]. The stabi-
lization time is O(n log n) rounds where n is the number of nodes in the initial
state and the space complexity per node i is O(di) where di is the distance from
the root to node i.

Contributions: This paper has two major contributions. It includes the first
snap-stabilizing binary search tree (BST) and the first snap-stabilizing heap al-
gorithm. Being snap-stabilizing gives our algorithms a unique feature — they
always behave as expected by their specifications. It should be noted that a
self-stabilizing algorithm is guaranteed to satisfy the desired specification only
in a finite time. In the context of the BST problem, in a self-stabilizing BST
solution, if the root initiates a BST computation, it is not guaranteed that the
tree will become a BST when the computation terminates. If the computation
is repeated (a bounded but unknown number of times), the self-stabilizing al-
gorithm guarantees that eventually, the tree will become a BST. The proposed
snap-stabilizing solution achieves a much better solution than the above. It en-
sures that when a BST computation initiated by the root terminates, the tree is
a BST. Thus, we do not need to repeat the computation unless the application
program demands repeated sorting of the values in the tree.

A key feature of our solution is that the maximum number of items that can
be stored at any time at any processor is constant (independent of the size (n) of
the network). Under this space constraint, our solution is asymptotically optimal
in time and takes O(n) rounds. A processor i requires O(log si) bits where si is
the size of the subtree rooted at i. So, the root uses O(log n) bits. The proposed
algorithm uses a snap-stabilizing heap algorithm as a preprocessing step. This is
also the first snap-stabilizing distributed solution to the heap problem. The cost
of the heap construction is O(h) rounds and constant (independent of n) space.

Outline of the Paper: In Section 2, we present the computational model,
snap-stabilization, and the specification of the BST problem. We present the
solution (the detail code of the algorithm) in Section 3. Due to lack of space, the
detail code of the predicates and macros are omitted. They are available in the
technical report [1]. We give a sketch of the correctness proof in Section 4, while
the detail proof is available in [1]. We finish the paper with some concluding
remarks in Section 5.

Snap-Stabilizing Optimal Binary Search Tree 3

2 Preliminaries

Distributed System: We consider an asynchronous binary tree network of n
processors with distinct ID’s. The root is denoted by r. We will use nodes
and processors interchangeably. The processors communicate using bi-directional
links. We assume the local shared memory model of communication. The pro-
gram of every processor consists of a set of shared variables and a finite set
of actions. A processor can only write to its own variables, and read its own
variables and variables owned by the neighboring processors. Each action is of
the following form: < label > < guard > −→ < statement >. The guard of
an action in the program of any process p is a boolean expression involving the
variables of p and its neighbors. The statement of an action of p updates one
or more variables of p. An action can be executed only if its guard evaluates to
true. We assume that the actions are atomically executed, meaning, the evalua-
tion of a guard and the execution of the corresponding statement of an action,
if executed, are done in one atomic step.

The state of a processor is defined by the value of its variables. The state of a
system is the product of the states of all processors. We will refer to the state of
a processor and system as a (local) state and (global) configuration, respectively.
A processor p is said to be enabled in a configuration γ if there exists at least an
action A such that the guard of A is true in γ. We consider that any processor p
executed a disabling action in the computation step γi �→ γi+1 if p was enabled
in γi and not enabled in γi+1, but did not execute any action between these
two configurations. (The disabling action represents the following situation: At
least one neighbor of p changed its state between γi and γi+1, and this change
effectively made the guard of all actions of p false.) Similarly, an action A is said
to be enabled (in γ) at p if the guard of A is true at p (in γ). We assume an
unfair and distributed daemon. The unfairness means that a processor p may
never be chosen by the daemon to execute an action even if it is continuously
enabled unless it is the only enabled processor.

A computation step is a transition between two configurations where the
transition contains at least one action and at most one action per processor.
The distributed daemon implies that during a computation step, if one or more
processors are enabled, then the daemon chooses at least one (possibly more) of
these enabled processors to execute an action.

In order to compute the time complexity measure, we use the definition of
round [7]. This definition captures the execution rate of the slowest processor in
any computation. Given a computation e, the first round of e (let us call it e′) is
the minimal prefix of e containing the execution of one action (an action of the
protocol or the disable action) of every continuously enabled processor from the
first configuration. Let e′′ be the suffix of e, i.e., e = e′e′′. Then second round of
e is the first round of e′′, and so on.

Snap-Stabilization: We assume that in a normal execution, at least one processor
(called, the initiator) initiates the protocol upon an external (w.r.t. the protocol)
request by executing a special type of action, called an initialization action.

4 D. Bein, A.K. Datta, and V. Villain

Definition 1 (Snap-Stabilization). Let P be a protocol designed to solve a
task T . P is called snap-stabilizing if and only if, starting from any configuration,
any execution E of P always satisfies the specification of T .

Specification 21 (BST Problem). A protocol P is considered as a BST al-
gorithm, if and only if the following conditions are true: (i) Any computation
initiated by the root terminates in finite time. (ii) When the computation termi-
nates, the values in the tree satisfy the BST property.

Remark 1. To prove that a BST algorithm is snap-stabilizing, we have to show
that every execution of the protocol satisfies the following two properties: (i)
starting from any configuration, the root eventually executes an initialization
action. (ii) Any execution, starting from this action, satisfies Specification 21.

The time needed to reach the configuration where the initialization action is
enabled is called the delay of the protocol.

3 Binary Search Tree Algorithm

In this section, we describe the data structures used, followed by a detailed
explanation of how the algorithm works when the initiator (the root process)
starts the algorithm until the values are arranged in the tree such that it becomes
a BST. We divide the algorithm code in two parts: module Heap (Subsection
3.1) and module Sort (Subsection 3.2).

A node i holds four constants. The constants are not changed by the BST
algorithm. The constants are: the value V.i that needs to be sorted in the tree,
the parent ID p.i, the left child ID left.i, and the right child ID right.i. If i does
not have any of the above three neighbors, the corresponding constant’s value
is represented as ⊥. For example, for the root node r, p.r = ⊥, and for the leaf
nodes, left.i = right.i = ⊥. We denote the set of neighbors and set of children
of i by N.i and D.i, respectively. We assume that the tree has n nodes and has a
height of h. Let Ti be the subtree rooted at i. Then si and hi denote the number
of nodes and height, respectively, of Ti.

Our BST construction is transparent to the changes (addition or removal
of notes) in the tree structure. If such changes occur, then the algorithm will
incorporate the changes “on the fly” by nodes either entering an abnormal sit-
uation with respect to their new neighbors, or by completing the current cycle
and restarting a new cycle with added/deleted values. We assume that after the
add/remove operations/queries are executed, our algorithm will be initiated by
the root and a new BST tree will be constructed in O(n) rounds. This makes the
lower bound of Ω(n) under the constraints considered in this work higher than
that of the usual functions (e.g., find, insert, and delete) for a non-stabilizing
BST.

The basic idea of the algorithm is as follows: The algorithm runs in two
phases. The root initiates the BST computation by starting a heapify process
(shown as Module Heap in the algorithm) to create a maxheap of the tree. Then

Snap-Stabilizing Optimal Binary Search Tree 5

the root initiates the second phase (shown as Sort module). During this phase,
the values are placed in the nodes in the BST order, placing the highest value
first, the second highest value next, and so on. As the maxheap has been created
in the previous phase, the root holds the maximum value of the tree. This highest
value is sent to the rightmost node (say, i) of the tree. The destination of the
second highest value (say, second) is dependent on if i is a leaf or an internal
node. If i is a leaf node, then second is sent to the parent of i (say, j). Then the
third highest value (say, third) will be sent to the left child of j (if present) or
to the parent of j. If i is an internal node, then second goes to the left child of
i. Thus, values are placed in the tree following a right-parent-left order.

The algorithm will be similar if we have constructed a minheap instead of the
maxheap. In that case, in the second phase, the values will be placed following
a left-parent-right order. From now on, heap will imply maxheap. If a node i
satisfies the maxheap property with respect to its parent and children, we say i
is in heap order or in HO in short.

Some of the variables used by a node i are described below. The rest of the
variables will be defined in the informal explanations in the next two subsec-
tions. The sorted value SV.i will contain the final sorted value at the end of
the algorithm. tSV.i is used to store a temporary sorted value. The heap value
HV.i is the result of the first phase (Heap module). The module Sort needs to
maintain the size of the subtrees rooted at each node. This size variable s.i for
node i is computed in Heap and used in Sort.

A node may use at most seven states (see Figure 1 below). Module Heap uses
six states: C (cleaning state), B (ready to start the heapify process), M , M left,
M right (the states corresponding to if the maximum heap value HV is based
on its own heap value, the maximum heap value of its left child, the maximum
heap value of its right child, respectively), P (the Heap phase finished at this
node, and the Sort phase is ready to start at this node). Module Sort uses C,
P , and T (the algorithm is terminated).

M Mleft right

MB
(non−leaf nodes)

(leaf nodes)
M

C TP

Fig. 1. The seven states used by the algorithm

A configuration in which the root is in state C is called a clean configuration.
Starting from such a configuration, all other nodes in the tree will eventually
reach C state. If all nodes are in C state, then the corresponding configuration
is termed as a normal starting configuration. Any configuration reachable from
a normal starting configuration by executing the algorithm guards is called a
normal configuration. All other configurations are considered to be abnormal.

6 D. Bein, A.K. Datta, and V. Villain

Some abnormal configurations can be locally detected by the processors. This
local detection is implemented using the abnormal predicates in Algorithms 3.1
and 3.2. These predicates are used as guards of correction actions in order
to avoid possible deadlocks and to speed up the protocol. Unfortunately, some
problems of abnormal configurations cannot be locally detected. For example,
the initial configuration may contain some sorted values (in tSV) that do not
match any V values. The correction actions can remove the locally detectable
problems in O(h) rounds even before the root executes its initialization action.
The other problems are eventually removed during the suffix of the protocol
starting from the initialization action of the root.

Starting from an abnormal configuration, an execution not necessarily will
bring the system to a normal starting configuration, but to a normal configura-
tion. When a node has an abnormal predicate enabled, it will change its state
to C, and all the nodes in its subtree will enter C state, but not necessarily its
parent (e.g. if the parent state is B).

Starting from a normal configuration where the root is able to execute the
initialization action with no delay, the tree will become a BST in O(n) rounds. In
general, the worst delay is O(n) rounds because the worst initial configuration is
the one where no node has any of the abnormal predicates enabled, but there is a
node with an incorrect tSV value (that does not match any V values). Thus, the
abnormal configurations do not increase the asymptotic time bound. So, starting
from any configuration, the tree will become a BST in O(n) rounds.

The interface between the two layers (application and BST) at a node i is
implemented by two variables: input value to the sorting protocol V.i and the
final or output sorted value SV.i. However, every time the BST protocol runs, we
do not want to disturb the application layer by writing (or overwriting) the value
of SV.i unless the value has changed. So, when the BST protocol terminates,
i’s sorted value is first placed in tSV.i. Then tSV.i and SV.i are compared. The
value of tSV.i is copied into SV.i only if the values are different (see Actions
rP3, iP3, and lP1&3 of module Sort).

3.1 Constructing the Heap

Upon receiving an external command to sort, if the root is enabled to start the
BST protocol, it starts the heapify process (module Heap). The root is enabled
to initiate if it is in C and its children are in C. The root broadcasts the heapify
command by changing its state to B. As this message (wave) goes down the
tree, all internal nodes change their state from C to B. When this broadcast
wave reaches the leaf nodes, they change their state from C to M to initiate
the heapify process (or wave). During this upward wave, the nodes compute two
things: the heap value (the maximum value in their subtrees) and the size of
their subtrees. When this wave reaches the root, the root changes its state to
M and the heap is created. The root then initiates another top-down wave by
changing its state from M to P . The next phase, i.e., the BST construction
phase starts from the P state. We now describe the heap construction in more
detail by referring Algorithm 3.1.

Snap-Stabilizing Optimal Binary Search Tree 7

1. (Start building a Heap) If the root is in C, its children will change to C
in at most one round. Either Action aCm or aCb is enabled, and since it is the
only enabled action, it is eventually executed in at most one round. When its
children change to C, the root changes its state from C to B and sets HV to its
internal value V (Action CB). An internal node changes its state from C to B
when its parent is in B and its children are in C. An internal node also initializes
its heap value HV with its input (or initial) value V (Action CB).

Figure 2(a) shows the clean configuration for a 11-node binary tree. After B
wave is executed top-down, the tree state is shown in Figure 2(b). We show only
the node’s internal value V , state S, and heap value HV . Symbol * means that
the value is not important.

120,C,120

250,*,*
105,*,*

100,*,*
75,*,*

205,*,*

145,*,*

130,*,*

225,*,* 25,*,*
60,*,*

120,B,120

225,C,* 25,C,*
60,C,*

100,B,100

105,B,105

75,C,*
250,B,250145,B,145

130,B,130

205,C,*

(a) Clean configuration (b) B wave is executed top-down

Fig. 2. Initial stage of constructing the heap

2. (Calculating Heap and s.i Values) A leaf node i changes its state from C
to M and executes macro init(i) (Action CM). In the macro init(i), the node
i sets the size of its subtree, s.i to 1 and sets the heap values of its left (lHV)
and right (rHV) subtrees to ⊥ (indicating a non-existent value).

When a parent of a leaf node detects that all its children are in state M
(Action BM∗ is enabled), it executes macro init(i), change from B to M , and
executes macro set HV s(i). If the (parent) node holds a value smaller than any
of the heap values of its children, it chooses as its heap value the larger heap value
(lHV or rHV) among its children and pushes its own heap value (HV) toward
the child that was holding the larger heap value. This heapification process goes
up the tree until it reaches the root.

Predicate update HV s(i) is true when due to the heapification process at
the parent of i, i’s heap value became smaller than the values of its children. So,
HV.i needs to be swapped with that of one of its children. Predicate h order(i)
is true if i satisfies the heap property with respect to its children.
For a non-leaf node i that is about to execute the macro set HV s(i), we consider
three cases.

Case 1). HV.i is larger than the heap values of its children. So, heap order is
maintained at i. Then the macro set HV s(i) does not change the variables S.i
(remains M) and HV.i.

8 D. Bein, A.K. Datta, and V. Villain

Case 2). Assume that the heap value of one of the children (say, the right child
right.i) of i is higher than both HV.i and that of the left child of i. The macro
set HV s(i) selects dir.i = right and sets S.i = M right. So, node i will push its
old heap value (now in variable down.i) to its right child. Assume that down.i is
larger than the heap values of the children of right.i. So, down.i (the old value
of i) needs to be pushed only one level down the tree where it becomes the new
heap value of right.i in at most two rounds: First Action lrM is performed at
right.i, then Action M lrM is executed at node i (i changes its state back to M).
Figure 3 shows a part of a binary tree to illustrate this case. For each node we
show the variable s, the state S, lHV , HV , rHV , and down. Symbol b means
⊥. The check mark symbol marks an enabled node.

2,M ,b,225,145
right

down=145

(b)

1,M,b,225,b
down=b

2,M ,b,225,145
right

down=145

down=b
1,M,b,145,b

(c)

down=b
1,M,b,145,b

down=145
2,M,b,225,145

(d)

145,B,145

1,M,b,225,b
down=b

(a)

Fig. 3. Macro set HV s executed at the node with V = 145

Case 3). Similar to Case 2 except that down.i is smaller than the heap value of
one of the children of right.i. So, the old value of i (now in down.i needs to be
pushed at least two levels down the tree before it finds a node j where down.i
becomes the heap value of j. In Figure 4, the value 130 is pushed down two
levels. For each node we show the variable s, the state S, lHV , HV , rHV , and
down. Symbol b means ⊥. The check mark symbol marks an enabled node.

Smaller values may be pushed to a node i from its ancestor. When that
happens, i changes its state from M to M left/M right. When the wave (changing

2,M,205,250,b
down=b

2,M,205,130,b
down=b

2,M ,b,225,145right

down=145

5,M,225,250,205

2,M ,130,205,b

(e)

left

down=130

down=130

2,M,205,130,b
down=b

2,M ,b,225,145right

down=145

130,B,130

2,M ,b,225,145

5,M,225,250,205

(a)

(d)

right

right

2,M ,b,225,145
down=145

down=130

down=145

(c)

5,M ,225,250,205right
down=130

(b)

right5,M ,225,250,205
down=130

2,M,205,250,b
down=b

2,M ,b,225,145left

down=145

Fig. 4. Macro set HV s executed at node with V = 130

Snap-Stabilizing Optimal Binary Search Tree 9

state from B to M) reaches the root, the root changes its state from B to M .
Then the root may change to state M left or M right if it needs to push its heap
value (which is its internal value and now in down.r) down the tree. Then it
pushes down.r to either M left or M right. When the corresponding child of the
root receives the value down, the root goes back to M and stays in M since it
has no ancestors.

3. (Finishing the Heap Construction) Predicate consistency(i) is true when
the heap values of the children of i stored at i are the same as the heap values
stored at the corresponding children. When the root and its children are in state
M and consistency(r) is true, the root changes its state to P and executes
macro init P (r) (Action MP). Eventually, every node changes its state from
M to P . This P wave eventually reaches the leaves. The root initiates the BST
construction when the root and its children are in P , i.e., the root can start the
next phase even if note all nodes of the tree are in P state.

Starting from the clean configuration presented in Figure 2(a), after executing
the Heap module when the root and its children are in state M , a possible
configuration is given in Figure 5(a). The root, when surrounded by M state
children, changes its state to P (Figure 5(b)). For each node we show the variable
s, the state S, lHV , HV , rHV , and down. Symbol b means ⊥.

11,M,225,250,105

5,M,145,225,205

down=120

down=120

down=120 down=130
right left2,M ,130,205,b2,M ,b,145,120

1,M,b,145,b 1,M,b,205,b

1,M,b,75,b

1,M,b,25,b 1,M,b,60,b

3,M,25,100,60

5,M,75,105,100

down=b

down=b down=b

down=b

down=b

down=b
down=b

5,M,145,225,205

2,M ,b,145,120

11,P,225,250,105
down=b, dir=right

down=120

down=120
right

down=130
left2,M ,130,205,b

1,M,b,205,b1,M,b,145,b

1,M,b,75,b
3,M,25,100,6

1,M,b,60,b1,M,b,25,b

5,M,75,105,100

down=b
down=b

down=b

down=b down=b

down=b

down=b

(a) Root and its children are done (b) P wave starts from the root

Fig. 5. The root and its children are done executing Module Heap

We defined various abnormal predicates to characterize different types of
local inconsistencies at a node during the heap construction. If any of these
predicates is true at a node, then the only enabled action at that node will be
aCm. This action when executed changes the state of the node to C.

3.2 Constructing the BST

At the end of the heap construction, every node changes it state from M to P
and executes the macro init P (i). In this macro, every non-leaf node i sets the
variable dir.i to point to the child that will receive the sorted value from the
root. Recall that the sorted values are placed in right-parent-left order.

Every node (including the root) will receive a sorted value from the root and
send its heap value to the root. These two actions are executed concurrently.

10 D. Bein, A.K. Datta, and V. Villain

Algorithm 3.1. Module Heap
Predicates

abnormal B(i) :: is true when the node, in state B, is in abnormal situation with some neighbor (parent or child).
abnormal M∗(i) :: is true when the node, in state M, either has some variables with abnormal values or is in
abnormal situation with some neighbor (parent or child).
consistency(i) :: is true when the nodes stores in rHV.i and lHV.i the heap values of its children (if any).
h order(i) :: is true when the node has the MaxHeap property.
update HVs(i) :: is true when the node needs to update its heap value since some child has a bigger heap value
than itself.

Macros
init(i) :: is executed when changing from B/C to M state.
init P(i) :: is executed when changing from M to P state to prepare the node for BST construction.
set HVs(i) :: selects the child dir ∈ {left, right} that has the maximum heap value by comparing lHV.i and rHV.i.

{Program for the root node r}

CB S.r = C ∧ ∀j∈D.r S.j = C −→ S.r = B; HV.r = V.r

BM∗ ¬abnormal B(r) ∧ S.r = B ∧ ∀j∈D.r S.j ∈ {M, Mleft, Mright} −→ init(r); S.r = M; set HV s(r)

MlrM ¬abnormal M∗(r) ∧ ∃j∈{left,right} (S.r = Mj ∧ j.r �= ⊥ ∧ HV.j.r = down.r) −→ S.r = M

MP ¬abnormal M∗(r) ∧ S.r = M ∧ ∀j∈D.r S.j = M ∧ consistency(r) −→ S.r = P ; init P (r)

aCm (S.r = B ∧ abnormal B(r)) ∨ (S.r ∈ {M, Mleft, Mright} ∧ abnormal M∗(r)) −→ S.r = C

{Program for an internal node i, which is the d child of its parent, d ∈ {left, right}}

CB S.i = C ∧ S.p.i = B ∧ ∀j∈D.iS.j = C −→ S.i = B; HV.i = V.i

BM∗ ¬abnormal B(i) ∧ S.i = B ∧ S.p.i = B ∧ ∀j∈D.iS.j ∈ {M, Mleft, Mright} −→
init(i); S.i = M; set HV s(i)

MlrM ¬abnormal M∗(i) ∧ ∃j∈{left,right} (S.i = Mj ∧ j.i �= ⊥ ∧ HV.j.i = down) −→ S.i = M

lrM ¬abnormal M∗(i) ∧ S.i = M ∧ S.p.i = Md ∧ h order(i) −→ HV.i = down.p.i
MM∗ ¬abnormal M∗(i) ∧ S.i = M ∧ update HV s(i) −→ set HV s(i)
MP ¬abnormal M∗(i) ∧ S.i = M ∧ S.p.i = P ∧ ∀j∈D.iS.j = M ∧ consistency(i) −→ S.i = P ; init P(i)

aCm (S.i = B ∧ abnormal B(i)) ∨ (S.i ∈ {M, Mleft, Mright} ∧ abnormal M∗(i)) −→ S.i = C

{Program for a leaf node i, which is the d child of its parent, d ∈ {left, right}}

CM S.i = C ∧ S.p.i = B −→ HV.i = V.i; init(i); S.i = M;
lrM ¬abnormal M∗(i) ∧ S.i = M ∧ S.p.i = Md −→ HV.i = down.p.i
MP ¬abnormal M∗(i) ∧ S.i = M ∧ S.p.i = P −→ S.i = P ; init P (i)
aCm (S.i = M ∧ abnormal M∗(i)) ∨ S.i ∈ {B, Mleft, Mright} −→ S.i = C

Upon completion of the heap, the root holds the maximum (heap) value of the
entire tree, its children hold the maximum (heap) values of their subtrees, and
so on. The above heap property is exploited in the BST construction. The root
first sends out its own heap value to the rightmost place in the tree. The root
then gets the second highest value of the tree easily (in constant steps) from one
of its children. So, the concurrency of the two main tasks — sending the sorted
value to the proper place and moving the heap values upward toward the root
— are achieved by using the heap property. That is the reason of using the heap
phase as a pre-processing phase of the BST construction.

When a sorted value sent to a node belongs to that node (i.e., it is the node’s
sorted value), it is stored in tSV . A node is done sorting if all nodes in its
subtree (including itself) received their final sorted values. This is checked in the
predicate done. When a node is done, it changes its state to T . Obviously, this
wave of state change from P to T starts from the leaves and ends at the root.
When the root changes its state to T , the algorithm terminates. In the following,
we describe a normal execution of module Sort:

4. (Select Sorted Values for all Nodes) Predicate new sorted() is true if the
root still has values to sort: HV.r �= ⊥, either it just started or the previous sorted

Snap-Stabilizing Optimal Binary Search Tree 11

value has been delivered (down.r = ⊥), there are nodes that need more sorted
values (s.r > 0), and it has consistency with its children (consistency(r) = true).

If the root is in P and Predicate new sorted() is true, the only enabled
action is Action rP1. So, it will eventually be executed. The current HV.r value
is moved into down.r, s.r is decremented, and HV.r becomes ⊥. Then the larger
of the heap values of one of its children is moved in HV.r by executing the macro
move HV s(r). That will enable Action rP1 again.

5. (Receive Sorted Value and/or Collect Heap Value) Although these two
actions are executed concurrently, we present them separately below:

5.1 (Receive Sorted Value) We first define a target node for some node. For
some node i, if the condition s.i > 0 ∨ (s.i = 0 ∧ (left.i �= ⊥ ∧ s.left.i = 1) is
true, then there exists a unique node j to which down.i �= ⊥ will be delivered
(either j = i or j is one of the children of i). We call node j the current target
of node i. dir.i holds the value j.

We use the following predicates in this part of the algorithm:
Predicate sent sorted(i) is true if the non-root node i has previously received

another value from its parent p.i and it has already delivered it.
Predicate my turn(i) is true if it is the turn of node i to collect its sorted

value. Node i has no current sorted value (tSV.i �= ⊥), either it has no right
subtree (right.i = ⊥) or is full (s.right.i = 0), and has a value (down.i �= ⊥)
that was not taken by any of the children of node i (Predicate sent sorted(i) is
false).

Predicate get sorted(j) is true if j, the d ∈ {left, right} child of its parent
i, is allowed to copy in down.i the value stored at its parent, j still needs sorted
values (s.j > 0), it is the current target of node i (dir.i = d), and the sorted
value held by i is a new one (down.i �= down.j).

During the BST construction, if Predicate my turn(i) is true, the target of
node i is i itself. Otherwise, for a non-leaf node i, the target j of node i is one of
the children of i that is allowed to copy into down.j the value stored at down.i if
either Action iP1 or lP1&3 is enabled and executed. We now consider the three
types of target node j of node i (root, internal, and leaf) below:

[Root]) The target node is the root itself (i = j = r). Then my turn(r) is true
and the only enabled action is Action rP3. The root moves down.r into tSV.r,
updates SV.r if necessary, and selects its left child (if exists) as its current target
(by changing dir.r to left), and sets down.r to ⊥.

[Internal] The target node j is an internal node. We have two cases for j:
I1) If my turn(j) is true, then the only enabled action for j is Action iP3

which is similar to Action rP3.
I2) If my turn(j) is false, then the only possible enabled action for j is

Action iP1. iP1 is enabled if get sorted(j) is true and the condition down.j =
⊥ ∨ sent sorted(j) are true.

Condition down.j = ⊥ ∨ sent sorted(j) is true if either j has never received
a value from i (down.j = ⊥), or has previously received another value from i
and has already delivered it (sent sorted(j) is true).

12 D. Bein, A.K. Datta, and V. Villain

When Action iP1 is performed, down.i is copied into down.j, s.j is decre-
mented, and j checks if it has to give up its heap value to its parent (Predicate
moveup hv(j) is explained below).

[Leaf] The target node j is a leaf node. Since the only value the leaf is allowed
to receive is its own sorted value, the target of j is j itself. If get sorted(i) is
true, the only action enabled at j is lP1&3, so it eventually gets executed.

5.2 (Collect Heap Value) Predicate moveup hv(i) is true for some node i if i’s
heap value (HV.i �= ⊥) was taken by p.i as its heap value. In that case, i selects
the larger of the heap values of its children as its next heap value. Variable dhv.i
indicates which child (heap value) will be selected. We now need to distinguish
three cases.

Case 1 [HV.i = ⊥]. i waits until done(i) becomes true so that it can change to
state T .

Case 2 [HV.i �= ⊥ ∧ lHV.i = ⊥ ∧ rHV.i = ⊥]. If node i is the root node r, then
it has to wait until Action rP1 becomes enabled and gets executed. Then HV.i
becomes ⊥ and Case 1 becomes applicable.

If i is a non-root node, then when moveup hv(i) is true, the heap value
HV.i �= ⊥ is moved up the tree from node i to its parent p.i (action iP1, iP4,
lP1&3, or lP4 is enabled and executed). HV.i becomes ⊥ and Case 1 becomes
applicable.

Case 3 [HV.i �= ⊥ ∧ (lHV.i �= ⊥ ∨ rHV.i �= ⊥)]. Node i is a non-leaf node, and
there exists a unique node j (decided in macro move HV s(i)) that will move
its heap value to i’s heap value when one of Actions rP1, iP1, iP4, lP1&3, and
lP4 is executed. Node j is one of the children of i and is called the current sink
of node i.

If node i is the root node r, then it has to wait until Action rP1 becomes
enabled and gets executed. Then macro move HV s(r) is executed and HV.i
receives the larger of the heap value of its children. Either Case 2 or Case 3
becomes applicable then.

If i is a non-root node, then if moveup hv(i) is true, the heap value HV.i �=
⊥ is moved up the tree from node i to its parent p.i and i executes macro
move HV s(i) (Action iP1 or iP4 is enabled and executed). Either Case 2 or
Case 3 becomes enabled.

For example, starting from a configuration where the root and its children
are in state P , after executing the action rP1, we obtain the configuration shown
in Figure 6(a). Now its right child has to execute iP1 before the root is able to
move again and execute rP2. Also its left child has to execute iP4 before the
root can execute rP1. Once both children execute, we obtain the configuration
as shown in Figure 6(b). For each node, we show the variable s, the state S,
lHV , HV , rHV , down, and dir. Symbol b means ⊥.

6. (Sets its Own Sorted Value and Adjusts the Direction for the Future Sorted
Values) If my turn(i) is true, i collects its sorted value and adjusts the direction
of sorted values toward its left subtree, if it exists. Otherwise, dir.i is set to ⊥.

Snap-Stabilizing Optimal Binary Search Tree 13

5,P,145,225,205

2,P,130,205,b

1,P,b,130,b

1,P,b,120,b

2,P,b,145,120
1,P,b,75,b

5,P,75,105,100

3,P,25,100,60

1,P,b,25,b 1,P,b,60,b

10,P,205,225,105

down=b, dir=b

down=b, dir=right

down=b, dir=right

down=250, dir=right, dhv=left

down=b, dir=right

down=b, dir=righ
down=b, dir=right

down=b, dir=b

down=b, dir=b down=b, dir=bdown=b, dir=b

2,P,130,205,b

1,P,b,130,b

1,P,b,120,b

2,P,b,145,120
1,P,b,75,b

3,P,25,100,60

1,P,b,25,b 1,P,b,60,b

5,P,145,205,130

10,P,205,225,105

4,P,75,105,100

down=250, dir=right, dhv=left

down=250, dir=right

down=b, dir=right

down=b, dir=bdown=b, dir=b

down=b, dir=b

down=b, dir=b

down=b, dir=right

down=b, dir=right,dhv=right

down=b, dir=right

down=b, dir=b

(a) Root generates a sorted value (b) Right node gets the value,
(Action rP1) left node changes its HV

Fig. 6. Some state ending the execution of Heap module by root and its children

7. (Terminating the BST) Predicate done(i) is true when node i has HV.i =
⊥, does not need more sorted values from the root, and has its currently sorted
value tSV.i �= ⊥.

When a leaf node i is done receiving the sorted values (done(i) is true), it
changes its state from P to T . When a non-leaf node i is done receiving its sorted
values (predicate done(i) is true) and all its children are in state T , i changes
its state from P to T (Action PT is enabled).

We defined various abnormal predicates to characterize different types of
local inconsistencies at a node during the BST construction. If any of these
predicates is true at a node, then the only enabled action at that node will be
aCb. This action when executed changes the state of the node to C.

4 Proof of Correctness

Due to lack of space, we give a brief summary of the correctness proof, while
details are available in [1].

We first present the proof of correctness assuming the weakly fair daemon. (A
daemon is weakly fair if a continuously enabled process will be eventually chosen
by the daemon.) Later in Section 4.2, we show that the algorithm works under
the unfair daemon as well. The time and space complexity of the algorithm are
discussed in Section 4.1.

We first show a lower bound of Ω(n) on the time complexity for the BST
problem under the constraint as discussed earlier (Lemma 1).

Next, we show how the algorithm corrects any abnormal configuration into
a normal configuration in finite number of rounds. Considering faulty networks,
the system may start in an abnormal configuration where there exists at least
one abnormal processor. We prove that if some node i is abnormal, then S.i
becomes C in at most one round. Using this result, we show that if S.i = C, all
the nodes in the subtree rooted at i, Ti change to C in O(hi) rounds. Then in
O(h) rounds the system reaches a configuration which does not contain any local
problem and the behavior of the protocol is now almost as the normal behavior
(the result is in Lemma 4. We conclude that the delay (the time needed for

14 D. Bein, A.K. Datta, and V. Villain

Algorithm 3.2. ModuleSort
Predicates

abnormal P(i, d) :: is true when the node, in state P , either has some variables with abnormal values or is in
abnormal situation with some neighbor (parent or child).
s consistent(i) :: is true when s.i is consistent with the variables s of its children (either the node and its children
need no more sorted values, or if it needs, then the number of values needed suffices the node and the children
needs).
abnormal T(i) :: when the node, in state T , either has some variables with abnormal values or is in abnormal
situation with some neighbor (parent or child).
done(i) :: is true when the node is done executing the current BST cycle.
get sorted(i) :: is true when the node is ready to receive a sorted value from its parent.
moveup hv(i) :: is true when the node heap value was taken by its parent.
new sorted() :: is true when the root has generated a new sorted value.
my turn(i) :: is true when it is the node turn to store its sorted value (currently stored in down.i).
sent sorted(i) ≡ is true when the node has sent the sorted value it held to one of its children (to its target node).

Macro move HVs(i) :: selects the child dhv ∈ {left, right} that has the maximum heap value.

{Program for the root node r}

rP1 ¬abnormal P(r, ⊥) ∧ S.r = P ∧ new sorted() −→
down.r = HV.r; s.r = s.r − 1; HV.r = ⊥
if (lHV.i �= ⊥ ∨ rHV.i �= ⊥) then move HV s(r)

rP2 ¬abnormal P(r, ⊥) ∧ S.r = P ∧ sent sorted(r) ∧ ¬my turn(r) −→ down.r = ⊥

rP3 ¬abnormal P(r, ⊥) ∧ S.r = P ∧ my turn(r) −→
tSV.r = down.r
if SV.r �= tSV.r then SV.r = tSV.r
if left.r �= ⊥ then dir.r = left else dir.r = ⊥
down.r = ⊥

PT ¬abnormal P(r, ⊥) ∧ S.r = P ∧ done(r) ∧ ∀j∈D.r S.j = T −→ S.r = T

aCb (S.r = P ∧ abnormal P(r, ⊥)) ∨ (S.r = T ∧ abnormal T (r)) −→ S.r = C

{Program for an internal node i that is the d child of its parent, d ∈ {left, right}}

iP1 ¬abnormal P(i) ∧ S.i = P ∧ get sorted(i) ∧ (down.i = ⊥ ∨ sent sorted(i)) −→
down.i = down.p.i; s.i = s.i − 1
if moveup hv(i) then HV.i = ⊥

if (lHV.i �= ⊥ ∨ rHV.i �= ⊥) then move HV s(i)

iP3 ¬abnormal P(i) ∧ S.i = P ∧ my turn(i) −→
tSV.i = down.i
if SV.i �= tSV.i then SV.i = tSV.i
if left.i �= ⊥ then dir.i = left else dir.i = ⊥

iP4 ¬abnormal P(i) ∧ S.i = P ∧ ¬(get sorted(i) ∧ sent sorted(i)) ∧ ¬my turn(i) ∧ moveup hv(i) −→
HV.i = ⊥
if (lHV.i �= ⊥ ∨ rHV.i �= ⊥) then move HV s(i)

PT ¬abnormal P(i, d) ∧ S.i = P ∧ done(i) ∧ ∀j∈D.iS.j = T −→ S.i = T

aCb (S.i = P ∧ abnormal P (i, d)) ∨ (S.i = T ∧ abnormal T (i)) −→ S.i = C

{Program for a leaf node i that is the d child of its parent, d ∈ {left, right}}

lP1&3 ¬abnormal P(i) ∧ S.i = P ∧ get sorted(i) ∧ down.i = ⊥ −→
down.i = down.p.i; s.i = 0
if moveup hv(i) then HV.i = ⊥
tSV.i = down.i
if SV.i �= tSV.i then SV.i = tSV.i

lP4 ¬abnormal P(i) ∧ S.i = P ∧ ¬get sorted(i) ∧ moveup hv(i) −→ HV.i = ⊥

PT ¬abnormal P(i, d) ∧ S.i = P ∧ done(i) −→ S.i = T

aCb (S.i = P ∧ abnormal P (i, d)) ∨ (S.i = T ∧ abnormal T (i)) −→ S.i = C

the root to execute the initialization action) of our algorithm is O(n) rounds
(Lemma 2).

Once we establish the finite round delay (as above), our remaining obligation
is to show that starting from a normal starting configuration, the tree will satisfy
the BST property in finite rounds.

Snap-Stabilizing Optimal Binary Search Tree 15

We prove that starting from a normal starting configuration, the state of
every node eventually becomes B (for non-leaf nodes) or M (for leaf nodes). Any
internal node i sets its heap value and changes its state from B to M/M left/
M right. When the root r is in M state, then HV.r, lHV.r, and rHV.r hold the
maximum value in the entire tree, in its left subtree, and in its right subtree,
respectively. We conclude that, starting from a normal starting configuration, in
at most 4h + 3 rounds, the tree will satisfy the heap property and all nodes will
be in state P (Lemma 3).

Note that the guarded actions of Module Sort for each process (root, in-
ternal, and leaf node) are mutually exclusive. So, at any time during the BST
construction, at most one of the root actions is enabled, at most one of any
internal node actions is enabled, and at most one of any leaf node actions is
enabled. This was done to implement a sequential, pipelined delivery of sorted
values in decreasing order.

The root will continue sending the sorted values (via down.r) in descending
order as long as there exists a target node for a value (new sorted() will be true
as long as s.r > 0). The value of down.r follows a path of current target nodes,
starting from the root and ending at some node in the tree. When the root takes
the heap value of its sink node to make it a sorted value, in at most one round,
the child adjust its heap value to one of its children. In at most n rounds, the
root is done generating sorted values, and in at most additional h rounds every
node in the system receives its sorted value (Lemma 4), and enters state T . Once
the root enters T state, the BST construction is done.

Finally, we prove that starting from an arbitrary configuration where the
nodes have distinct internal values drawn from an arbitrary set, our algorithm
arranges them in a BST order in O(n) rounds (Theorem 1).

Theorem 1 and Lemma 1 imply that the proposed BST algorithm is time
optimal.

Lemma 1. Under the space constraint that the maximum number of items that
can be stored at any time at any processor is constant (i.e., independent of n),
the lower bound on the time complexity for arranging n values in a given tree in
a distributed manner such that the tree becomes a binary search tree (BST) is
Ω(n).

Proof. Assume that all the values larger (respectively, smaller) than the root’s
value are currently in the left (respectively, right) subtree of the root. Then n−1
values have to pass by the root to move to their right place in the BST. As the
root has a constant memory, it will require the root to execute at least n actions
to move those values.

Lemma 2. The delay is in O(n) rounds.

Lemma 3. Starting from a normal starting configuration, it takes at most 4h+3
rounds to heapify the tree.

Lemma 4. Starting from a normal configuration, where the root and its children
are in state P , in at most n + h rounds, every node in the system receives its
sorted value and changes its state to T .

16 D. Bein, A.K. Datta, and V. Villain

Theorem 1. Starting from an arbitrary configuration where n values are
arranged in a binary tree, each node holding a single key value, Algorithm 3.2
arranges those n values such that the tree becomes a BST in O(n) rounds and
requires O(log n) space.

4.1 Complexity

All the variables used by a node i except one (s.i) require O(1) space complexity.
Variable s.i requires O(log si) bits where si represents the total number of nodes
in the subtree Ti rooted at i. In the worst case, (for the root node) the space
complexity is O(log(n)). The heap construction does not use this variable, it
is needed only for the BST construction. But, just for better presentation, we
included the the computation of s.i in Module Heap. Therefore, we claim that
the heap construction uses O(1) space. The BST construction requires O(log n)
space in the worst case.

Both the time complexity and delay of the proposed algorithm is O(n) rounds.
Starting from a normal starting configuration, the time to arrange the values

as a heap is O(h) (at most 4h + 3 rounds)(Lemma 3).
Starting from an arbitrary configuration, the time to arrange the values such

that the tree is a BST order is O(n) rounds (Theorem 1).

4.2 Unfair Daemon

In any round, the total number of actions executed by all processes is bounded.
Since any execution of our algorithm has a bounded complexity in terms of
steps (or actions), the total number of actions executed in a normal execution is
bounded. Thus, the duration of a round cannot be extended forever by ignoring
some enabled processes for an indefinite period of time.

5 Conclusion

We present the first snap-stabilizing distributed binary search tree (BST) algo-
rithm and the first snap-stabilizing heap algorithm. A key feature of both the
solutions is that the maximum number of items that can be stored at any time
at any processor is constant — independent of the size (n) of the network.

The proposed snap-stabilizing distributed BST solution ensures that when a
BST computation initiated by the root terminates, the tree is a BST. Under the
space constraint, our BST solution is asymptotically optimal in time and takes
O(n) rounds. A processor i requires O(log si) bits of space where si is the size
of the subtree rooted at i. So, the root uses O(log n) bits.

The heap construction spends O(h) rounds where h is the height of the tree.
Its space requirement is constant, independent of n.

If the space complexity of the heap solution is asymptotically optimal, it is
an open problem to show that it is possible to design a BST protocol with a
space complexity of O(1) while keeping a time complexity of O(n).

Snap-Stabilizing Optimal Binary Search Tree 17

Our BST construction is transparent to changes in the tree structure (by
adding/removing nodes). If such changes occur, then the algorithm will incor-
porate the changes “on the fly” by nodes either entering an abnormal situation
with their new neighbors, or by completing the current cycle and restarting a
new cycle with added/deleted values. Since the performance of the usual func-
tions on the tree (as find, insert, delete) is directly related to the structure of the
tree (height, balanced or unbalanced property etc.) and as we have mentioned
before, our algorithm does not alter the tree structure, we do not address this
issue of performance here.

Also, the usual operations on the tree make sense if the tree has the BST
property. Since the BST property is guaranteed when the algorithm terminates,
and for stabilization purposes the algorithm is an infinite cycles of complete BST
construction, these functions insert, find, delete can be applied to the output
values.

References

1. D Bein, AK Datta, and V Villain. Self-stabilizing Optimal Binary Search Tree. Tech
Report, www.cs.unlv.edu/ siona/Research/SS/tech05a.pdf, 2005.

2. A Bui, AK Datta, F Petit, and V Villain. State-optimal snap-stabilizing PIF in tree
networks. In Proceedings of the Third Workshop on Self-Stabilizing Systems, pages
78–85. IEEE Computer Society, 1999.

3. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT
Press, 1992.

4. A Cournier, AK Datta, F Petit, and V Villain. Enabling snap-stabilization. In
Proceedings of the Twentythird International Conference on Distributed Computing
Systems, pages 78–85. IEEE Computer Society, 2003.

5. EW Dijkstra. Self-stabilizing systems in spite of distributed control. In EWD 391,
In Selected Writings on Computing: A Personal Perspective, pages 41–46, 1973.

6. S Dolev. Self-Stabilization. MIT Press, Cambridge, MA, 2000.
7. S Dolev, A Israeli, and S Moran. Uniform dynamic self-stabilizing leader election.

IEEE Transactions on Parallel and Distributed Systems, 8(4):424–440, 1997.
8. T. Herman and T. Masuzawa. Available stabilizing heaps. Information Processing

Letters, 77:115–121, 2001.
9. T. Herman and T. Masuzawa. A stabilizing search tree with availability proper-

ties. Fifth International Symposium on Autonomous Decentralized Systems (ISADS
2001), pages 398–405, 2001.

Synchronous vs. Asynchronous Unison

Christian Boulinier, Franck Petit, and Vincent Villain

LaRIA, CNRS FRE 2733,
Université de Picardie Jules Verne, France

Abstract. This paper considers the self-stabilizing unison problem. The
contribution of this paper is threefold. First, we establish that when any
self-stabilizing asynchronous unison protocol runs in synchronous sys-
tems, it converges to synchronous unison if the size of the clock K is
greater than CG, CG being the length of the maximal cycle of the short-
est maximal cycle basis if the graph contains cycles, 2 otherwise (tree
networks). The second result demonstrates that the asynchronous uni-
son in [3] provides a universal self-stabilizing synchronous unison for trees
which is optimal in memory space. It works with any K ≥ 3, without
any extra state, and stabilizes within 2D rounds, where D is the diame-
ter of the network. This protocol gives a positive answer to the question
whether there exists or not a universal self-stabilizing synchronous uni-
son for tree networks with a state requirement independant of local or
global information of the tree. If K = 3, then the stabilization time of
this protocol is equal to D only, i.e., it reaches the optimal performance
of [8]. The third result of this paper is a self-stabilizing unison for general
synchronous systems. It requires K ≥ 2 only, at least K + D states per
process, and its stabilization time is 2D only. This is the best solution
for general synchronous systems, both for the state requirement and the
stabilization time.

1 Introduction

We consider the problem of phase synchronization [9] in self-stabilizing [5] uni-
form distributed systems. Phase synchronization consists in designing a syn-
chronization mechanism devoted to a distributed protocol made of a sequence
of phases 0, 1, . . . such that no process starts to execute its phase i + 1 before
all processes have completed their phase i. It is also required that no process
will be permanently blocked from executing its phase i + 1 if all processes have
completed their phase i. This mechanism induces a global abstract device called
phase clock to maintain the current phase number, incremented each time a
phase completes. In a distributed environment, each process maintains its own
copy of the phase clock. Therefore, the problem consists in the design of a pro-
tocol insuring that all the phase clocks are in phase. The phrase “in phase” has
a natural meaning in synchronous systems. In such systems, a global signal is
assumed to simultaneously increment all clock variables. So, the clocks are in
phase if the values of all clock variables are identical. The (synchronous) uni-
son [7] problem consists in the design of a protocol to keep all clocks in phase,
i.e., to insure identical time on all clocks and increment in unison.

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 18–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Synchronous vs. Asynchronous Unison 19

In asynchronous systems, there is no global signal. So, one can at most en-
sure that no process starts to execute its phase i + 1 before all processes have
completed their phase i. But this kind of synchronization needs O(D) rounds
between two phases. So, in general, the synchronization requirement is relaxed
as follows: the clock are in phase if the values of two neighboring processes do
not differ by no more than 1, and the clock value of each process is incremented
by 1 infinitely often. The asynchronous unison [4] deals with this criteria.

Related Works. Numerous works in the area of self-stabilization deals with the
phase synchronization problem. In this paper, we focus on deterministic solutions
for uniform systems only. Moreover, we limit our discussion to tree and general
networks. In the rest of this section, K is the size of the clock, S is the number
of states the processes are required to have, D is the diameter of the network, n
the number of processes, and Δ is the maximum degree of a process.

Self-stabilizing Synchronous Unison. The first self-stabilizing synchronous unison
is given in [7]. It works on a general graph but it requires unbounded clocks.
The first protocol with a bounded memory space is proposed in [1]. It needs
K ≥ 2ΔD, and stabilizes in 3ΔD steps. As it is noticed in [8], the Δ factor
is due to the model: It is assumed that a process cannot read more than the
state of one neighbor at a time. From now on, all the protocols we discuss
will be assumed to work on a model where every process can read the state of
all its neighbors at a time. In this model, the solution in [1] needs K ≥ 2D
(S = K) and stabilizes in at most 3D steps only. To our knowledge, this is the
only deterministic synchronous unison for general uniform networks (according
to our restrictions).

A solution for tree networks is proposed in [8]. It requires K = 3m (m > 0),
S = K, and stabilizes in (D × (K − 1))/2 steps. Note that the stabilization time
is equal to D only for m = 1 (K = 3), but is greater than 2D when m ≥ 2.
Thus, in the case 3m ≥ 2D, the solution in [1] is better. In terms of stabilization
time, the best solution on trees is proposed in [11]. It stabilizes in at most D
steps only. Moreover, this protocol is “universal”, meaning that K can take any
value greater than or equal to 2 and the state requirement does not need any
global information like either n or D. It depends on Δ only: S = (Δ + 1)K.

Self-stabilizing Asynchronous Unison. The self-stabilizing asynchronous unison
was introduced in [4]. Two deterministic protocols are proposed. The former
works assuming unbounded clock, the latter needs K ≥ n2 (according to our
model) (S = K). In [3], the authors show the lower bound for K. K must be
greater than CG, where CG is the length of the maximal cycle of the shortest
maximal cycle basis if the graph contains cycles, 2 otherwise (tree networks).
They also show that S, the amount of space, must be greater than K + TG − 2,
where TG is the length of the longest chordless cycle (0 in tree networks). In
the same paper, they present an algorithm reaching these bounds. This protocol
is optimal in terms of state requirement. One can notice that CG and TG are
bounded by n. So, even if CG and TG are unknown, we can choose K ≥ n + 1
and S = K + n − 2 ≥ 2n − 1. The protocol is still better than [4].

20 C. Boulinier, F. Petit, and V. Villain

Contribution. The contribution of this paper is threefold. We first show that
there exists a strong connection between the asynchronous and synchronous
unisons: when any self-stabilizing asynchronous unison protocol runs in syn-
chronous systems, it converges to synchronous unison if K > CG. The first
result of this surprising connection is that the solutions in [4] and [3] are also
self-stabilizing for the synchronous unison in synchronous systems.

The second result is that [3] provides a universal self-stabilizing synchronous
unison for trees which is optimal in memory space. It works with any K ≥ 3,
S = K, and stabilizes within 2D rounds. This protocol gives a positive answer
to the question in [10]: “Does there exist a universal self-stabilizing synchronous
unison protocol for tree networks with a state requirement independant of local
or global information of the tree (e.g. n, D, or Δ)?” We can also remark that for
K = 3, the stabilization time is equal to D only, i.e., that reaches the optimal
performance of [8]. It is really surprising that a general protocol written for
asynchronous unison solves the synchronous with such performances.

However, these good results do not hold for general synchronous systems. In
this case, as claimed previously, the protocol needs K > CG and S = K+TG−2,
which is, in general, worst than 2D [1], and stabilizes in CPG + TG + D—CPG

is the lenghth of the longest elementary chordless path of G, which is also worst
than 3D [1] in general. The third result of this paper is a new universal solu-
tion which takes advantages of both approaches in [1,3]. This protocol, called
SS-MinSU , requires K ≥ 2 only, S ≥ K + D, and its stabilization time is 2D
only. This is the best solution for general synchronous systems, both for the state
requirement and the stabilization time.

Paper Outline. In the next section (Section 2), we describe the distributed
system and the model we consider in this paper. In the same section, we also state
what it means for a protocol to be self-stabilizing and give formal statements of
finite incrementing systems. In Section 3, we state the problems considered in
this paper, and establish that any self-stabilizing asynchronous unison executed
in a synchronous system also solves the synchronous unison if K > CG. In the
same section, we discuss performance issues of the protocol in [3] executed in
synchronous settings. Algorithm SS-MinSU and its correctness are presented
in Section 4. Finally, we make some concluding remarks in Section 5.

2 Preliminaries

In this section, we define the distributed systems and programs considered in
this paper, and state what it means for a protocol to be self-stabilizing. Next,
we present the notions of finite incrementing system and reset.

Distributed System. A distributed system is an undirected connected graph,
G = (V, E), where V is a set of nodes—|V | = n, n ≥ 2—and E is the set of
edges. Nodes represent processes, and edges represent bidirectional communica-
tion links. A communication link (p, q) exists iff p and q are neighbors. The set

Synchronous vs. Asynchronous Unison 21

of neighbors of every process p is denoted as Np. The degree of p is the number
of neighbors of p, i.e., equal to |Np|.

The program of a process consists of a set of registers (also referred as vari-
ables) and a finite set of guarded actions of the following form:
< label >:: < guard > −→< statement >. Each process can only write to its
own registers, and read its own registers and registers owned by the neighboring
processes. The guard of an action in the program of p is a boolean expression
involving the registers that p can read. An action can be executed only if its
guard evaluates to true. The actions are atomically executed, meaning, the eval-
uation of a guard and the execution of the corresponding statement of an action,
if executed, are done in one atomic step.

The state of a process is defined by the values of its registers. The configu-
ration of a system is the product of the states of all processes. Let a distributed
protocol P be a collection of binary transition relations denoted by �→, on C, the
set of all possible configurations of the system. P describes an oriented graph Γ =
(C, �→), called the transition graph of P . A sequence e = γ0, γ1, . . . , γi, γi+1, . . .,
∀i ≥ 0, γi ∈ C, is called an execution of P iff ∀i ≥ 0, γi �→ γi+1. A process p is
said to be enabled in a configuration γ (γ ∈ C) if there exists an action A such
that the guard of A is true in γ. (When there is no ambiguity, we will omit γ.)
Similarly, an action A is said to be enabled (in γ) at p if the guard of A is true
at p (in γ). We assume that each transition from a configuration to another is
driven by a distributed scheduler called daemon. In this paper, we consider two
types of distributed daemons: (1) the asynchronous daemon chooses any non-
empty set of enabled processes to execute an action in each computation step,
and (2) the synchronous daemon chooses all enabled processes to execute an
action in each computation step. The asynchronous daemon can be assumed to
be fair. Fairness means that in all executions, every process executes an action
infinitely often. Otherwise, the daemon is said to be unfair.

The distributed systems considered in this paper are assumed to be uniform.
A distributed protocol is uniform if every process with the same degree executes
the same program. In particular, we do not assume unique process identifier or
some consistent orientation of links in the network such that any dynamic elec-
tion of a master clock can be feasible.

Self-stabilization. Let X be a set. A predicate P is a function that has a
Boolean value—true or false—for each x ∈ X . A predicate P is closed for a
transition graph Γ iff every state of an execution e that starts in a state satisfy-
ing P also satisfies P . A predicat Q is an attractor of the predicat P , denoted by
P � Q, iff Q is closed for Γ and for every execution e of Γ , begining by a state
satisfying P , there exists a configuration of e for which Q is true. A transition
graph Γ is self-stabilizing for a predicate P iff true � P .

Finite Incrementing System and Reset. Let Z be the set of integers and K
be a strictly positive integer. Two integers a and b are said to be congruent mod-
ulo K, denoted by a ≡ b[K] iff ∃λ ∈ Z, b = a+λK. We denote ā the unique ele-

22 C. Boulinier, F. Petit, and V. Villain

ment in [0, K − 1] such that a ≡ ā[K]. The distance dK(a, b) = inf(a − b, b − a).
In the following, we assume K ≥ 3.

Two integers a and b are said to be locally comparable iff dK(a, b) ≤ 1. We
then define the local order relation ≤l as follows: a ≤l b

def⇔ 0 ≤ b − a ≤ 1. Given
two locally comparable integers a and b, b�l a

def= b − a if a ≤l b, b�l a
def= −a − b

otherwise (b ≤l a). Note that b�la ≡ b−a[K]. So, if a0, a1, a2, . . . ap−1, ap is a se-
quence of integers such that ∀i ∈ {0, . . . , p−1}, ai is locally comparable to ai+1,

then we define the local variation of this sequence as follows: S =
p−1∑
i=0

(ai+1 �l ai).

Clearly, S ≡ ap − a0[K] and S ≡ 0[K] ⇔ ap − a0 ≡ 0[K].

We define X = {−α, . . . , 0, . . . , K − 1}, where α is a positive integer. Let ϕ
be the function from X to X defined by ϕ(x) = x + 1 if x ≥ 0, ϕ(x) = x + 1
otherwise (x < 0). The pair (X , ϕ) is called a finite incrementing system. K is
called the period of (X , ϕ). Let tailϕ = {−α, . . . , 0} and stabϕ = {0, . . . , K − 1}
be the sets of “extra” values and “expected” values, respectively. The set tail∗ϕ is
equal to tailϕ \ {0}. We denote by ≤tail the natural total order on tailϕ, and ≤
the natural order on X . A reset on X consists on enforcing any value of X \{−α}
to −α without using ϕ.

3 Distributed Unison

In this section, we first state the problems considered in this paper. Next, we
recall some definitions and results established in [3]. Then, we show that any
self-stabilizing asynchronous unison also solves the synchronous unison when it
is executed on a synchronous system if K > CG. Finally, we discuss performance
issues of the protocol in [3] executed in synchronous settings.

3.1 Problem Definition

We assume that each process p maintains a clock register rp with an incrementing
system (X , ϕ), i.e., the only applicable operation on rp is ϕ, algorithmically
defined as follows:

Cond −→ rp := ϕ(rp)

Our responsability is to define Cond such that the specifications discussed
below are verified. Let SU and WU be two predicates—SU and WU stand for
strong unison and weak unison, respectively. Let γ be a system configuration,
we define the two following predicates:

SU(γ)
def≡ ∀p ∈ V, ∀q ∈ Np : (dK(rp, rq) = 0) in γ

WU(γ)
def≡ ∀p ∈ V, ∀q ∈ Np : (rp ∈ stabϕ) ∧ (dK(rp, rq) ≤ 1) in γ

In the remainder, we will abuse notation, referring to the corresponding set
of configurations simply by SU (resp. WU).

Synchronous vs. Asynchronous Unison 23

The synchronous (distributed) unison problem is specified as follows:

Unison (Safety): SU is closed;
No Lockout (Liveness): In SU , every process p increments its clock vari-
able infinitely often.

With a synchronous daemon, the problem is trivialy solved by Cond ≡ true.
The asynchronous (distributed) unison problem is to design a uniform pro-

tocol so that the following properties are true in every execution:

Unison (Safety): WU is closed;
Synchronization: In WU , a process can increment its clock rp only if the
value of rp is lower than or equal to the clock value of all its neighbors;

No Lockout (Liveness): In WU , every process p increments its clock rp

infinitely often.

Note that the asynchronous distributed unison problem is usually specified
in the literature in terms of safety and liveness only—refer to [4,6]. These two
specifications are not sufficient for K = 3. Actually, since ∀p ∈ V, rp ∈ {0, 1, 2},
∀p, q ∈ V, dK(rp, rq) ≤ 1 in every configuration. So, clearly, the above trivial
guarded action satisfies the safety property. The liveness property is guaranteed
by the fairness of the daemon. However, any process may execute the action a
finite number of times before any of its neighbors execute the action once. Obvi-
ously, such a behavior is not the expected behavior. That shows the significance
of the synchronization property.

Remark 1. If K ≥ 4 and the safety is satisfied, then the synchronization is
satisfied.

Lemma 1. If a uniform distributed protocol P solves the asynchronous distrib-
uted unison problem, then Cond ≡ ∀q ∈ Np : (rq = rp) ∨ (rq = ϕ(rp)).

Proof. From the Synchronization property, Cond ⇒ ∀q ∈ Np : (rq = rp)∨(rq =
ϕ(rp)). Assume that there exists an execution of P leading in a configuration γ
such that there exists a process p satisfying ∀q ∈ Np : (rq = rp) ∨ (rq = ϕ(rp))
and Cond is false in γ. Let Δp be the number of neighbors of p. Denote Δγ

p ,
the number of neighbors q of p such that rq = ϕ(rp) in γ. Consider now the
clique with n = Δp + 1 processes. The clock value of n − Δγ

p processes is equal
to rp, whereas the clock value of Δγ

p processes is equal to ϕ (rp). In such a
configuration, Cond being false, the system is at a deadlock. This contradicts
the “No Lockout” property. �

In the remainder, we will show that, if K > CG—the cyclomatic characteris-
tic of G, formally defined in Definition 3 below—, then the above guarded action
solves the asynchronous unison problem. If K ≤ CG, then there is a possibility of
deadlocks [3]. Obviously, we obtain a kind of unicity: a distributed asynchronous
system depends on the choice of the incrementing system (X , ϕ) only. There-
fore, the only interesting problem is to stabilize these protocols, i.e., to solve the
above problems with the extra global specification: true � SU (respectively,
true � WU).

24 C. Boulinier, F. Petit, and V. Villain

3.2 Path Delay and Properties in WU

In this subsection, we consider configurations in WU only. So, the clock values
of neighboring processes are locally comparable. Let us recall the notion of path
delay and some of its properties established in [3].

Definition 1 (Path Delay). The delay of a path μ = p0p1 . . . pk, denoted by
Δμ, is the local variation of the sequence rp0 , rp1 , . . . , rpk

, i.e,

Δμ =
k−1∑
i=0

(
rpi+1 �l rpi

)
if k > 0, 0 otherwise (k = 0).

The path delay is an algebraic notion. Obviously, Δμ = −Δμ̃, where μ̃ des-
ignates the reverse path of μ. Let μ1 = p0p1 . . . pj and μ2 = pj . . . pk−1 be two
paths. By the Chasle relation: Δμ1μ2 = Δμ1 + Δμ2 .

Consider two neighboring processes p and q. In any configuration in WU , if
p or q is enabled, then there are only three possible cases:

1. q is enabled. In this case, rp � ϕ(rq) = rp � rq − 1.
2. Both p and q are enabled. Then, ϕ(rp) � ϕ(rq) = rp � rq.
3. p is enabled. Then, ϕ(rp) � rq = rp � rq + 1.

From this fact, we obtain by induction the following lemma:

Lemma 2. Let μ be a path p0p1 . . . pk. Consider any system transition γ �→ γ′.
Let Δ (Δ′, respectively) be the delay on the path μ at the state γ (γ′, resp.).
During γ �→ γ′:

1. If p0 is incremented and pk is not, then Δ′ = Δ − 1.
2. If both p0 and pk are incremented or none is incremented, then Δ′ = Δ.
3. If pk is incremented and p0 is not, then Δ′ = Δ + 1.

Definition 2 (Intrinsic Delay). The delay between two processes p and q is
pq-intrinsic if it is independent of the choice of the path from p to q. The delay
is intrinsic iff it is pq-intrinsic for every p and q in V .

From Lemma 2, if a path μ = p0p1 . . . p0 is a cycle, then the delay on μ is
an invariant for any execution of any asynchronous unison. The absolute value
of this invariant is called the residual of μ. In [3], we showed that the delay is
intrinsic if and only if all the residuals are equal to 0. In particular, the path
delay is intrinsic on a tree.

Let us define Predicate WU0 which is true for a system configuration γ iff γ
satisfy WU and the delay is intrinsic in γ. Since the residuals are invariant, we
can claim the following theorem:

Theorem 2 ([3]). WU and WU0 are closed for any execution of an asynchro-
nous unison. Moreover, for any execution starting from a configuration in WU0,
the no lockout property is guaranteed.

The delay being intrinsic iff it is equal to 0 on every cycle, by linearity, a path
delay is intrinsic iff it is equal to 0 on a cycle basis [2]. We borrow the following
definition from [3]:

Synchronous vs. Asynchronous Unison 25

Definition 3 (Cyclomatic Characteristic). If G is an acyclic graph, then its
cyclomatic characteristic CG is equal to 2. Otherwise (G contains cycles), let Λ
be a cycle basis. Denote λ(Λ) the length of the longest cycle in Λ. The cyclomatic
characteristic of G, CG, is equal to the lowest λ(Λ) among cycle bases.

Theorem 3 ([3]). For any asynchronous unison, K > CG ⇔ WU = WU0.

3.3 From Asynchronous to Synchronous Unison

We assume that all the executions considered in this subsection start from a
configuration γ ∈ WU0. Denote Δpq the common value of delays on paths from
p to q. We say that p “precedes” q in a configuration γ iff Δpq ≤ 0. Similarly, p and
q are “γ-synchronous” if Δpq = 0 in γ. Denote the γ-synchronization relation
by ≡γ . Since the network is connected, the precedence relation is a preorder,
and the γ-synchronization relation is the related equivalence relation. According
to precedence relation, the minimal processes (maximal processes, respectively)
are γ-synchronous. The set of minimal processes (resp. maximal processes) is
never empty because the network is finite. Moreover, every minimal process is
obviously enabled. We denote by V0 the set of minimal processes at each state.

The quotient of the precedence relation by the equivalence γ-synchronous
relation defines a total order on V , denoted by ≤γ . Note that V

≡γ
is a singleton

if and only if γ satisfies SU . Moreover, V
≡γ

is a finite set totaly ordered by ≤γ .
This quotient can be modified in each transition.

Let γ ∈ WU0. Let k be the number of equivalent classes in V
≡γ

. The equiva-
lence classes are denoted by V0, V1, . . . , Vk−1 with V0 <γ V1 <γ . . . <γ Vk−1.

Obviously,∀p, q ∈ V, p ∈ Vi, q ∈ Vj ⇒ Δpq = j − i. We are now able to
define the map Σ on the configuration set WU0 by: Σ (γ) = (V0, V1, . . . , Vk−1).
Note that Σ(γ) = (V) ⇔ γ ∈ SU .

Lemma 3. Let γ ∈ WU0. For every transition γ �→ γ′ scheduled by the syn-
chronous daemon: if p ∈ V0 in γ then p ∈ V0 in γ′.

Proof. Let p, q be two processes such that p �= q, and p ∈ V0 in γ. Since p ∈ V0
in γ, p is enabled. Denote by ρ the value of Δpq in γ. There are two cases:

1. q ∈ V0 in γ. Then, q is also enabled in γ and Δpq = 0 in γ′.
2. q /∈ V0 in γ. Then, ρ > 0 and from Lemma 2, Δpq ∈ {ρ − 1, ρ} in γ′.

In both cases, q precedes p in γ′. Thus, p is minimal in γ′. �
The distance between two processes p and q, denoted by d (p, q) is the

length of the shortest path between p and q. Let p ∈ V . We denote δp as
maxq∈V d(p, q). Let k be a positive integer. Define B(p, k) as the set of processes
such that d(p, q) ≤ k. Note that the diameter D of the network is equal to
maxp∈V maxq∈V d(p, q).

Theorem 4 (WU0 � SU). For every execution starting from any γ ∈ WU0 and
scheduled by the synchronous daemon, SU is an attractor for WU0. The time of
convergence from WU0 to SU is upper bounded by D, and this bound is optimal.

26 C. Boulinier, F. Petit, and V. Villain

Proof. Consider an infinite executions e = γt0 , γt1 , . . . such that γt0 ∈ WU0.
Let kt = | V

≡γt
|. We denote Σ(γt) by (V t

0 , V t
1 , . . . , V t

kt−1). Let p be an element

of V t0
0 with the lowest δp = w. Of course, we have kt0 − 1 ≤ w. We will prove

by induction that: ∀i ∈ N, B(p, i) ⊆ V t0+i
0 . This will prove that for i = w,

V t0+i
0 = V . Hence, the time convergence is less than or equal to w, which is less

than or equal to D.
If i = 0, then B(p, 0) = {p} ⊆ V t0

0 . Assume that i ≥ 0 and B(p, i) ⊆ V t0+i
0 .

Let q ∈ B(p, i + 1). Then, q is a neighbor of an element q′ of B(p, i). There are
two cases:

1. q ∈ V t0+i
0 . By Lemma 3, q ∈ V t0+i+1

0 .
2. q /∈ V t0+i

0 . Then, rq = ϕ(rq′). So, q is not enabled in γt0+i. It follows that
q ∈ V t0+i+1

0 .

In both cases, q ∈ V t0+i+1
0 . We deduce B(p, i + 1) ⊆ V t0+i+1

0 . And by induc-
tion ∀i ∈ N, B(p, i) ⊆ V t0+i

0 . The first part of the theorem follows.
Let p be one extremity on a diameter of G (δp = maxq∈V δq). Assume that

rp = 0 in γ0. We define for each q such that d(q, p) = k (k ∈ 1, . . . , D), rq = k.
This configuration is clearly in WU0 because the residuals are equal to 0. Starting
from such a configuration γ0, SU is reached in at least D steps. We showed that
D can be reached. This proves the second part of the theorem. �

Note that at the beginning of this section, we made the assumption that the
delay is intrinsic—Theorem 4 holds only under this assumption. If the delay is
not intrinsic, by Theorem 3, there is a residual which is not equal to 0. The
residuals are (1) invariants during the execution of the protocol and (2) equal
to 0 in SU . Therefore, if the delay is not intrinsic, the system may not converge
to SU . In Figure 1, all the configurations are in WU , but they are not in WU0.
However, starting from Configuration (i), the system will never converge to SU—
Configurations (i) and (iv) are identical.

1 0

2

(iii)

2

2

(i)

0 0

20

(i)

1

1 0

2

(ii)

1

1

1 0

(iv)

0

02

Fig. 1. A counter-example with K = 3 and CG = 5

From Theorems 4 and 3 follows :

Theorem 5. If K > CG, then any self-stabilizing asynchronous unison P de-
signed for the asynchronous daemon solves the self-stabilizing synchronous uni-
son if P is driven by the synchronous daemon.

Synchronous vs. Asynchronous Unison 27

The bounded memory unisons for asynchronous settings in [4,6] satisfy K >
CG because K ≥ n2. In [3], we proposed an algorithm called SSAU . In the same
paper, we showed that Algorithm SSAU solves the self-stabilizing asynchronous
unison if K > CG. It follows:

Corollary 1. If K > CG, then driven by the synchronous daemon, the self-
stabilizing asynchronous unisons in [3,4,6] are self-stabilizing synchronous
unisons.

3.4 Performances of Algorithm SSAU

We will discuss the performances of the protocol (for asynchronous systems)
proposed in [3], in the remainder referred as Algorithm SSAU—recalled in Al-
gorithm 1. Theorem 5 shows that if an asynchronous unison designed for asyn-
chronous systems is self-stabilizing, then it is also a self-stabilizing synchronous
unison in a synchronous environment. However, the stabilization time still de-
pends of the algorithm. We will now compute an upper bound of the stabilization
time of Algorithm SSAU in a general synchronous system. Next, we show its
performances in synchronous trees.

Algorithm 1. (SSAU) General Self-Stabilizing Asynchronous Unison
Constants and variables:

Np: the set of neighbors of process p; rp ∈ χ;
Boolean Functions:

ConvergStepp ≡ rp ∈ tail∗ϕ ∧ (∀q ∈ Np : (rq ∈ tailϕ) ∧ (rp ≤tailϕ rq));
LocCorrectp ≡ rp ∈ stabϕ∧

(∀q ∈ Np, rq ∈ stabϕ ∧ ((rp = rq) ∨ (rp = ϕ (rq)) ∨ (ϕ (rp) = rq)));
NormalStepp ≡ rp ∈ stabϕ ∧ (∀q ∈ Np : (rp = rq) ∨ (rq = ϕ(rp)));

Actions:
NA : NormalStepp ∨ ConvergStepp −→ rp := ϕ(rp);
RA : ¬LocCorrectp ∧ (rp
∈ tailϕ) −→ rp := −α ; (* Reset *)

Let e = γ0γ1 . . . γk . . . be a maximal execution of Algorithm SSAU . A reset
is a pair (p, t) where p is a process and t > 0 such that p executes Reset Action
in the transition γt−1 �→ γt, rp �= −α in γt−1 and rp = −α in γt. We say that p
is reset (to −α) in the configuration γt (or at time t).

Let (p1, t1) and (p2, t2) be two resets. We say that (p1, t1) generates (p2, t2),
notation (p1, t1)

r� (p2, t2) if and only if the following three conditions hold:

1. t1 < t2
2. p2 ∈ Np1 and ∀t ∈ [t1, t2 − 1] : rp2 /∈ tailϕ
3. rp2 = −α in γt2 (p2 is reset at time t2)

Since we are considering synchronous executions, (p1, t1)
r� (p2, t2) implies

that t2 = t1 +1. The relation r� defines a Directed Acyclic Graph (DAG), called

28 C. Boulinier, F. Petit, and V. Villain

reset DAG. If (p1, t1) is not generated by an other reset, we say that (p1, t1) is
an initial reset. In [3], we showed that in any execution (synchronous or not),
given one process p, there exists at most one t such that (p, t) is an initial reset.
Clearly, t = 1 for any synchronous execution.

A hole in a graph is a chordless cycle. A reset DAG is hole-transitive iff
(p1, t1)

r� (p2, t2)
r� . . .

r� (pi, ti) and p1p2 . . . pip1 is a hole, then (p1, t1)
r�

(pi, ti). A stutter is every path of the following forms: (p0, t0)(p1, t1)(p0, t2).

Definition 4. Let TG be a constant such that TG is either equal to 2 if G is a
tree network or equal to the length of the longuest hole of the network otherwise.

In [3], we showed that the reset DAG contains no stutter and is hole-transitive,
and Algorithm SSAU is self-stabilizing with respect to WU if α ≥ TG − 2, or if
TG = 3 and α = 0. So, under the above condition, the hole-transitivity property
and the absence of stutter imply that the projection of p0, p1, . . . , pk on G of any
path (p0, t0), (p1, t0 + 1) . . . (pk, t0 + k) on reset DAG is an elementary chordless
path. Since every initial reset begins at time t = 1 implying two neighboring
processes:

Lemma 4. If α ≥ TG − 2, the depth of the reset DAG is at most CPG, where
CPG is the length of the longest elementary chordless path of G.

So, under the above conditions (α ≥ TG − 2), the propagation time of resets
is at most CPG. Clearly, the back up time on the tail is bounded by α, and by
Theorem 5, the time of convergence to SU is less than or equal to D. Therefore:

Theorem 6. Driven by the synchronous daemon, the self-stabilization time of
Algorithm SSAU is upper bounded by CPG + α + D. If the topology is a tree,
since CPG = D, if α = 0, then the self-stabilization time of Algorithm SSAU is
upper bounded by 2D.

Note that it is easy to build an example showing that the bound CPG can
be reached. One could think that the reset propagation could be done in O(D)
steps. Unfortunately, the resets may not be propagated linearly in the network.
This is due to the fact that a register may be equal to 0. In that case, the 0 values
behave as barriers which must be bypassed by reset propagations—a 0 value is
not reset. Figure 2 shows an example of a system with such behavior—the clock
of p being equal to 0 prevents the reset initiated by q to be “directly” propagated
from the left to the right part of the network.

Theorem 6 provides a positive answer to the question in [10] whether there
exists or not a universal self-stabilizing synchronous unison for tree networks with
a state requirement independant of local or global information of the tree—e.g.
n, D, or Δ.

Corollary 2. If α = 0, Algorithm SSAU is a universal self-stabilizing synchro-
nous unison for tree networks with K (K ≥ 3) states per process, which stabilizes
in at most 2D steps.

Synchronous vs. Asynchronous Unison 29

Reset
0

pq

Fig. 2. An example showing why a reset may not be propagated in O(D) steps

Another consequence of Theorem 6 is that if we take K = 3 on a tree, we are
always in WU = WU0. So, there is no reset. Algorithm SSAU is then equivalent
to the one guarded action protocol in Algorithm 2, which simply implements the
“natural” clock incrementation.

Algorithm 2. Optimal Self-Stabilizing Synchronous Unison in Trees (K = 3)
Constants and variables:

Np: the set of neighbors of process p; rp ∈ {0, 1, 2};
Action:

NA : ∀q ∈ Np : (rp = rq) ∨ (rq = ϕ(rp)) −→ rp := ϕ(rp);

Theorem 7. If α = 0 and K = 3, then Algorithm SSAU is a self-stabilizing
synchronous protocol for tree networks which is optimal in both the stabilization
time—D steps, and number of states per process—3 states.

4 Efficient Synchronous Unison for General Networks

In the previous section, we showed that the stabilization time of Algorithm
SSAU is upper bounded by CPG + α + D. It is not very efficient in a gen-
eral graph. We now propose a self-stabilizing synchronous unison for general
connected graph, called Algorithm SS-MinSU . It is shown in Algorithm 3. Al-
gorithm SS-MinSU improves the stabilization time of Algorithm SSAU .

It is also based on an incrementing system, but the resets are managed by
the two following mechanisms:

1. A process p resets its clock to −α only if the clock values of p and all its
neighbors are in stabϕ, but not in phase—Action RA;

2. If the clock value of p or one of its neighbors is in tailϕ, then p sets its clock
to 1, plus the minimum values in {p} ∪ Np—Action TA.

If a system configuration is in WU \ SU , a reset is enable. So this algorithm
has no trade with the constant CG. In other words, Algorithm 3 requires the
period K ≥ 2 only. The number of states per process is equal to α + K with
α ≥ D. So, it works with only D + K states per process. The stabilization time
is at most 3D steps.

30 C. Boulinier, F. Petit, and V. Villain

Algorithm 3. (SS-MinSU) Self-Stabilizing Synchronous Unison in General
Graphs
Constants and Variables:

Np: the set of neighbors of process p; Np = Np ∪ {p}; rp ∈ X ;
Boolean Functions:

LocalUnisonp ≡ ∀q ∈ Np : (rp = rq);
NormalStepp ≡ rp ∈ stabϕ ∧ LocalUnisonp;
TailStepp ≡ ∃q ∈ Np, rq ∈ tail∗ϕ;
ResetInitp ≡ ∀q ∈ Np, rq ∈ stabϕ ∧ ¬LocalUnisonp

Actions:
NA : NormalStepp −→ rp := ϕ(rp);
TA : TailStepp −→ rp := ϕ(min{rq , q ∈ Np});
RA : ResetInitp −→ rp := −α ; (* Reset *)

Correctness Proof and Performance Analysis

Definition 5 (convergence state). Let e = γ0γ1 . . . γi . . . be a maximal exe-
cution of Algorithm SS-MinSU . A convergent state is a pair (p, i) where p is a
process and i ≥ 0 such that in γi, either rp ∈ tail∗ϕ or i > 0, rp = 0, and there
exists q ∈ Np such that rq = −1 in γi−1.

In the remainder, when it is necessary, we denote the value of rp in γi by γi.rp.
Let (p1, i1) and (p2, i2) be two convergent states. We say that (p1, t1) generates
(p2, i2), denoted by (p1, i1)

cs� (p2, t2), iff the following three conditions hold: (1)
i2 = i1 + 1; (2) p2 ∈ Np1 ; (3) rp2 = −α in γi2 and rp1 = 0 in γi1 or rp2 = 0 in
γi2 and rp1 = −1 in γi1 or rp2 ∈ tailϕ − {0,−α} in γi2 and γi2 .rp2 = ϕ(γi1 .rp1).
Relation cs� defines a Directed Acyclic Graph (DAG), called convergent DAG.
If (p0, t1) is not generated by an other convergent state, (p1, t1) is an initial
convergent state.

Due to the lack of space, some formal proofs are omitted. We first prove the
No Lockout property. Next, we give a condition for which the convergent DAG
is finite and the system stabilizes for SU . The idea behind the finitude proof of
the convergent DAG is to show that every path in the reset DAG is a path where
registers are incremented in each step at most α + 1 times. Then, we show that
if α > D, −α does not appears twice in a same path. Since every path starts at
time 0 or 1, we deduce that at time 2D all convergent states disappeared, and
the system is stabilized.

Theorem 8 (No lockout property). The No Lockout Property is garanteed.

Sketch of Proof. Let e = γ0γ1 . . . γi . . . (i ≥ 0) be a maximum execution. There
are two cases:

1. For every i > 0, there is no convergent state. Then, we show that for any
maximal execution e, initial convergent states are possible only if i ∈ {0, 1}.
Moreover, if for every i > 0 there exists no convergent state, then the system
is in SU . So, the system is in SU and the No Lockout property is garanteed.

Synchronous vs. Asynchronous Unison 31

2. There exists i > 0 with a convergent state. Let p be a process among
processes in convergent state such that rp contains a minimal value in rp.
Assume that rp �= 0 in γi. Then, p is enabled (Action TA). Assume that
rp = 0 in γi. Then, if rp = −α in γi+1, p is enabled (Action RA) in γi.
Otherwise, since rp contains the minimal value in tailϕ, ∀q ∈ Np, rq = 0 in
γi. So, p is enabled in γi. �

Theorem 9. If α ≥ D, then Algorithm SS-MinSU is self-stabilizing with re-
spect to SU , it stabilizes in at most D +α steps, and there is no reset for t > D.

Sketch of Proof. For every e = γ0γ1 . . . γi . . . (i ≥ 0), every path μ of the
convergent DAG having a maximal length starts in γ0 or in γ1. If μ starts with
a reset in either γ0 or γ1, then its length is at most α. Assume that the first
convergent state (p, 0) is not a reset. We show that if rp ≤ −D, then its length
is at most |rp|. Otherwise (rp > −D), its length is at most D + α, and it there
is a reset, it is at time |rp| + 1 ≤ D. �

Clearly, from Theorem 9, if α = D, then the system stabilizes in 2D steps.
Following the same reasonning as the proof of Theorem 5, we can easily show
the following corollary:

Corollary 3. If α ≥ D, then Algorithm SS-MinSU is self-stabilizing with re-
spect to SU , and it stabilizes in at most 2D steps.

Note that the synchronous unison can be reached while the clock values are
still in the tail. In any case, we can always insert between SS-MinSU and the
user application, the map Ψ from X to stabϕ such that:

Ψ : rp → rp[K]

5 Concluding Remarks

We have discussed in this paper the self-stabilizing unison problem. We establish
that when any self-stabilizing asynchronous unison protocol runs in synchronous

Table 1. Performances of Self-Stabilizing Unisons in Synchronous Trees

Number of Clock Number of States Stabilization
Values (K) per Process (S) Time (worst case)

Specific Algorithms
[8] K = 3m(m > 0) S = K D×(K−1)

2
K = 3 S = 3 D

General Algorithms
[1] K ≥ 2D S = K 3D

Algorithm SSAU K > 3 S = K 2D
Algorithm SSAU K = 3 S = 3 D

Algorithm SS-MinSU K ≥ 2 S = K + D 2D

32 C. Boulinier, F. Petit, and V. Villain

Table 2. Performances of Self-Stabilizing Unisons in Synchronous General Graphs

Number of Clock Number of States Stabilization
Values (K) per Process (S) Time (worst case)

[1] K ≥ 2D S = K 3D
[4] K ≥ n2 S = K Ω(n2)

Algorithm SSAU K ≥ CG + 1 S ≥ K + TG − 2 CPG + TG + D
Algorithm SS-MinSU K ≥ 2 S ≥ K + D 2D

systems, it converges to synchronous unison if the size of the clock K > CG.
We have also shown that the asynchronous unison in [3] provides a universal
self-stabilizing synchronous unison for trees which is optimal in memory space.
Finally, We designed a self-stabilizing unison for general synchronous systems
requiring K ≥ 2 only, K + D states per process, and its stabilization time is 2D
only. Comparaisons of the results of this paper are presented in Tables 1 and 2
for tree and generals synchronous networks, respectively.

References

1. A Arora, S Dolev, and MG Gouda. Maintaining digital clocks in step. Parallel
Processing Letters, 1:11–18, 1991.

2. C Berge. Graphs and hypergraphs. Elsevier Science Publishers B.V. (North-
Holland), 1989.

3. C Boulinier, F Petit, and V Villain. When graph theory helps self-stabilization. In
PODC ’04: Proceedings of the twenty-third annual ACM symposium on Principles
of distributed computing, pages 150–159, 2004.

4. JM Couvreur, N Francez, and M Gouda. Asynchronous unison. In Proceedings
of the 12th IEEE International Conference on Distributed Computing Systems
(ICDCS’92), pages 486–493, 1992.

5. EW Dijkstra. Self stabilizing systems in spite of distributed control. Communica-
tions of the Association of the Computing Machinery, 17:643–644, 1974.

6. S Dolev. Self-Stabilization. The MIT Press, 2000.
7. MG Gouda and T Herman. Stabilizing unison. Information Processing Letters,

35:171–175, 1990.
8. T Herman and S Ghosh. Stabilizing phase-clocks. Information Processing Letters,

54:259–265, 1995.
9. J Misra. Phase synchronization. Information Processing Letters, 38(2):101–105,

1991.
10. F Nolot. Self-stabilizing phase clock in distributed systems. PhD thesis, LaRIA,

Université de Picardie Jules Verne, Amiens, France, 2002. Dissertation in French.
11. F Nolot and V Villain. Universal self-stabilizing phase clock protocol with bounded

memory. In IPCCC ’01, 20th IEEE International Performance, Computing, and
Communications Conference, pages 228–235, 2001.

A Snap-Stabilizing DFS with a Lower Space
Requirement�

Alain Cournier, Stéphane Devismes, and Vincent Villain

LaRIA, CNRS FRE 2733,
Université de Picardie Jules Verne, Amiens (France)

{cournier, devismes, villain}@laria.u-picardie.fr

Abstract. A snap-stabilizing protocol, starting from any arbitrary ini-
tial configuration, always behaves according to its specification. In [4],
we presented the first snap-stabilizing depth-first search (DFS) wave
protocol for arbitrary rooted networks working under an unfair daemon.
However, this protocol needs O(NN) states per processors (where N is
the number of processors) and needs ids on processors. In this paper,
we propose an original snap-stabilizing solution for this problem with a
strongly enhanced space complexity, i.e., O(Δ2 × N) states where Δ is
the degree of the network. Furthermore, this new protocol does not need
a completely identified network: only the root needs to be identified, i.e.,
the network is semi-anonymous.

1 Introduction

In an arbitrary rooted network, a Depth-First Search (DFS) Wave is initiated
by the root. In this wave, all the processors are sequentially visited in depth-first
search order. This scheme has many applications in distributed systems. For
example, the solution of this problem can be used for solving mutual exclusion,
spanning tree computation, constraint programming, routing, or synchroniza-
tion.

The concept of self-stabilization [7] is the most general technique to design a
system tolerating arbitrary transient faults. A self-stabilizing system, regardless
of the initial states of the processors and messages initially in the links, is guar-
anteed to converge to the intended behavior in finite time. Snap-stabilization
was introduced in [2]. A snap-stabilizing protocol guaranteed that it always be-
haves according to its specification. In other words, a snap-stabilizing protocol
is also a self-stabilizing protocol which stabilizes in 0 time unit. Obviously, a
snap-stabilizing protocol is optimal in stabilization time.

Related Works. Several self-stabilizing (but not snap-stabilizing) wave protocols
based on the depth-first token circulation (DFTC) have been proposed for ar-
bitrary rooted networks, e.g., [9,11,10,6]. All these papers have a stabilization

� A full version of this paper is available at www.laria.u-picardie.fr/∼devismes/
tr2005-05.pdf

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 33–47, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

34 A. Cournier, S. Devismes, and V. Villain

time in O(D × N) rounds where N is the number of processors and D is the di-
ameter of the network. The protocols proposed in [11,10,6] attempted to reduce
the memory requirement from O(Δ×N) [9] to O(Δ) states per processor where
Δ is the degree of the network. However, the correctness of all the above proto-
cols is proven assuming a (weakly) fair daemon. Roughly speaking, a daemon is
considered as an adversary which tries to prevent the protocol to behave as ex-
pected, and fairness means that the daemon cannot prevent forever a processor
to execute an enabled action.

The first snap-stabilizing DFTC has been proposed in [12] for tree networks.
In arbitrary networks, a universal transformer providing a snap-stabilizing ver-
sion of any (neither self- nor snap-) protocol is given in [3]. Obviously, combining
this protocol with any DFTC protocol, we obtain a snap-stabilizing DFTC pro-
tocol for arbitrary networks. However, the resulting protocol works assuming a
weakly fair daemon only. Indeed, it generates an infinite number of snapshots,
independently of the token progress. Therefore, the number of steps per wave
cannot be bounded. Finally, we propose in [4] the first snap-stabilizing DFS pro-
tocol for arbitrary rooted network assuming an unfair daemon, i.e., the weakest
scheduling assumption. In contrast with the previous solutions, the time com-
plexity of each wave of the protocol can now be bounded in terms of steps.

Contribution. The protocol of [4] works on identified networks and needs O(NN)
states per processor. In this paper, we reduce this space complexity to O(Δ2×N)
states per processor using a method similar to that in [1]. This new solution
also works assuming an unfair daemon. Moreover, our protocol does not need
a completely identified network: only the root needs to be identified, i.e., the
network is semi-anonymous. Unfortunately, the time complexities of our protocol
are greater than those in [4]: a complete DFS Wave needs O(N2) rounds and
O(N3) steps instead of O(N) rounds and O(N2) steps. Nevertheless, the gain of
space requirement is such that the worst time complexities are a minor drawback.

Outline of the Paper. The rest of the paper is organized as follows: in Section 2,
we describe the model in which our protocol is written. Moreover, in the same
section, we give a formal statement of the Depth-First Search Wave Protocol
solved in this paper. In Section 3, we present the protocol and the intuitive ideas
of its correctness (due to the lack of space, the proof of correctness has been
omitted). Finally, we make concluding remarks in Section 4.

2 Preliminaries

Network. We consider a network as an undirected connected graph G = (V ,
E) where V is a set of processors (|V | = N) and E is the set of bidirectional
communication links. We consider networks which are asynchronous and rooted,
i.e., among the processors, we distinguish a particular processor called root. We
denote the root processor by r. A communication link (p, q) exists if and only if
p and q are neighbors. Every processor p can distinguish all its links. To simplify

A Snap-Stabilizing DFS with a Lower Space Requirement 35

the presentation, we refer to a link (p, q) of a processor p by the label q. We
assume that the labels of p, stored in the set Neigp, are locally ordered by ≺p.
We assume that Neigp is a constant and shown as an input from the system.

Computational Model. In our model, each processor executes the same program
except r. We consider the local shared memory model of computation. The pro-
gram of every processor consists in a set of shared variables (henceforth, referred
to as variables) and a finite set of actions. A processor can write to its own
variable only, and read its own variables and that of its neighbors. Each action
is constituted as follows: < label > :: < guard > → < statement > . The guard
of an action in the program of p is a boolean expression involving variables of p
and its neighbors. The statement of an action of p updates one or more variables
of p. An action can be executed only if its guard is satisfied. We assume that the
actions are atomically executed, i.e., the evaluation of a guard and the execution
of the corresponding statement, if executed, are done in one atomic step.

The state of a processor is defined by the value of its variables. The state
of a system is the product of the states of all processors. We will refer to the
state of a processor and the system as a (local) state and (global) configuration,
respectively. We note C the set of all possible configuration of the system. Let
γ ∈ C and A an action of p (p ∈ V). A is said enabled in γ if the guard of A is
satisfied in γ. Processor p is said to be enabled in γ if it has an enabled action
in γ.

Let a distributed protocol P be a collection of binary transition relations
denoted by �→, on C. A computation of a protocol P is a maximal sequence of
configurations e = (γ0,γ1,...,γi,γi+1,...), such that for i ≥ 0, γi �→ γi+1 (called a
step) if γi+1 exists, else γi is a terminal configuration. Maximality means that
the sequence is either finite (and no action of P is enabled in the terminal
configuration) or infinite. All computations considered in this paper are assumed
to be maximal. The set of all possible computations of P is denoted by E .

As we have already said, each execution is decomposed into steps. Each step
is shared into three sequential phases atomically executed: (i) every processor
evaluates its guard, (ii) a daemon (also called scheduler) chooses some enabled
processors, and (ii) the chosen processors execute some of their enabled actions.
When these three phases are done, the next step begins.

A daemon can be defined in terms of fairness and distributivity. In this paper,
we use the notion of weakly fairness: if a daemon is weakly fair, then every
continuously enabled processor is eventually chosen (by the daemon) to execute
an action. We also use the notion of unfairness: the unfair daemon can forever
prevent a processor to execute an action except if it is the only enabled processor.
Concerning the distributivity, we assume that the daemon is distributed meaning
that, at each step, if one or more processor are enabled, then the daemon chooses
at least one (possibly more) of these processors to execute actions.

We consider that any processor p executed a disabling action in the compu-
tation step γi �→ γi+1 if p was enabled in γi and not enabled in γi+1, but did
not execute any action between these two configurations. (The disabling action
represents the following situation: at least one neighbor of p changes its state

36 A. Cournier, S. Devismes, and V. Villain

between γi and γi+1, and this change effectively made the guard of all actions
of p false.)

To compute the time complexity, we use the definition of round [8]. This de-
finition captures the execution rate of the slowest processor in any computation.
Given a computation e (e ∈ E), the first round of e (let us call it e′) is the mini-
mal prefix of e containing the execution of one action (an action of the protocol
or the disabling action) of every enabled processor from the first configuration.
Let e′′ be the suffix of e such that e = e′e′′. The second round of e is the first
round of e′′, and so on.

In order to make our protocol more readable, we design it as a composition
of four algorithms. In this composition, if a processor p is enabled for k of the
combined algorithms, then, if the daemon chooses it, p executes an enabled
action of each of the k algorithms, in the same step. Variables, predicates, or
macros of Algorithm A used by Algorithm B are shown as inputs in Algorithm
B.

Snap-Stabilizing Systems. Snap-stabilization [2] is a general concept which can
be apply to several kinds of distributed protocol. However, the protocol presented
in this paper is a wave protocol as defined by Tel in [13]. So, we now propose a
simpler definition of snap-stabilization holding for wave protocols:

Definition 1. [Snap-stabilization for Wave Protocols] Let T be a task, and SPT
a specification of T . A wave protocol P is snap-stabilizing for SPT if and only
if: (i) at least one processor eventually executes a particular action of P, and
(ii) the result obtained with P from this particular action always satisfies SPT .

Specification of the Depth-First Search Wave Protocol.

Specification 1. Let Visited be a set of processors. A finite computation e ∈ E
is called a DFS Wave if and only if: (i) r initiates the DFS Wave by initializing
Visited with r, (ii) all other processors are then sequentially included in Visited
in DFS order, and (iii) r eventually detects the termination of the process.

Remark 1. So, in the practice, to prove that our protocol is snap-stabilizing
we have to show that every execution of the protocol satisfies: (i) r eventually
initiates a DFS Wave, and (ii) thereafter, the execution satisfies Specification 1.

3 Algorithm

We now present an informal description of our DFS Wave protocol (see Algo-
rithms 1 to 8 for the formal description). Along this description, we will give
the main keys to understand why our protocol is snap-stabilizing. For a sake of
clarity, we divided our protocol, referred to as Algorithm DFS, into four phases:

1. The visiting phase (Algorithms 1 and 2) sequentially visits the processors in
depth-first search order: Starting from r, the visit progresses as deeply as
possible in the network. When the visit cannot progress anymore (i.e., the

A Snap-Stabilizing DFS with a Lower Space Requirement 37

visit reaches a processor with a completely visited neighbourhood), the visit
backtracks to the latest visited processor having some non-visited neighbors,
if any. The visit terminates when it backtracks to r and r has a completely
visited neighbourhood.

2. The cleaning phase (Algorithms 3 and 4) cleans the trace of the last visiting
phase so that the root is eventually ready to initiate another visiting phase
again. The cleaning phase is initiated only when the visiting phase is entirely
done.

3. The confirmation phase (Algorithms 5 and 6) prevents to forgot some proces-
sors in the visiting phase initiated by the root (especially when the system
contains some erroneous behaviors). The confirmation phase is performed
each time the protocol needs to be sure that all the neighbors of the latest
visited processor have been visited by the normal visiting phase, i.e., the
visiting phase from the root. Indeed, since the system starts from any con-
figuration, some visiting phases can be rooted at another processor than r,
i.e., the abnormal visiting phases.

4. The abnormal trees’ deletion (Algorithms 7 and 8) erases all the abnormal
visiting phases.

In order to more precisely describe this four phases, we first present how to imple-
ment a non self-stabilizing DFS protocol (visiting phase and cleaning phase).
We then explain the problems appearing when we use this protocol in a self-
stabilizing1 context and how to solve them (abnormal trees’ deletion, confirma-
tion phase, ...). In particular, we will present some tools used for insuring the
snap-stabilization of our protocol, i.e., the optimality of our protocol in terms of
stabilization time.

Algorithm 1. Visiting Phase for p = r
Inputs:
on read: Neigp: set of neighbors (locally ordered);

Childp: macro of the abnormal trees’ deletion;
on read/write: Quep: variable of the confirmation phase;

Constants: Lp = 0; Parp =⊥;

Variable: Sp ∈ Neigp ∪ {idle, rdone};
Macro:
Nextp = (q = min≺p{q′ ∈ Neigp :: Sq′ = idle}) if q exists, rdone otherwise;
RealChildp = {q ∈ Childp :: Eq 	= Ep ⇒ Ep = B}; /∗ valid for Sp 	= idle only ∗/
Predicates:
End(p) ≡ (∀q ∈ Neigp :: Sq 	= idle ⇒ Parq 	= p)
AnswerOK(p) ≡ (Quep = A) ∧ (∀q ∈ Neigp :: Sq 	= idle ⇒ Queq = A)
Forward(p) ≡ (Sp = idle) ∧ (∀q ∈ Neigp :: Sp = idle)
Backward(p) ≡ (∃q ∈ Neigp :: Sp = q ∧ Parq = p ∧ Sq = done)

∧ [AnswerOK(p) ∨ (∃q ∈ Neigp :: Sq = idle)]
Actions:
F -action :: Forward(p) → Sp := Nextp; Quep := Q;
B-action :: Backward(p) → Sp := Nextp;

1 Remember that our snap-stabilizing protocol is a self-stabilizing protocol which sta-
bilizes in 0 time unit.

38 A. Cournier, S. Devismes, and V. Villain

Visiting Phase. In our non self-stabilizing protocol, each processor p maintains
two variables to implement this phase2:

- ∀p ∈ V , Sp ∈ Neigp ∪ {idle, done} if p �= r and Sp ∈ Neigp ∪ {idle,
rdone} if p = r. Sp = idle means that p is ready to be visited. Sp = q
such that q ∈ Neigp means that p participates to a visiting phase and its
successor in the visit is its neighbor q (respectively, p is called the predecessor
of q). Finally, Sp is set to done (resp. rdone if p = r) when the visit locally
terminates at p.

- ∀p ∈ V , Parp is used for keeping a mark of the DFS spanning tree computed
by the protocol. Indeed, Parp designates the parent of p in the traversal:
when p is visited for the first time, it designates its predecessor with Parp.
Obviously, r never has any parent. So, we state that Parr is the constant ⊥.

Since our protocol is non self-stabilizing, any execution must start from particu-
lar configurations. We call these configurations the normal initial configurations.
Here, there is only one normal initial configuration for our protocol and it is de-
fined as follows: ∀p ∈ V , Sp = idle. In this configuration, the root r initiates a
visiting phase by pointing out using Sr to its minimal neighbor p in the local
order ≺r (F -action). By this action, r becomes the only visited processor. Then,
at each step, exactly one processor p is enabled and two cases are possible:

a) Sp = idle and ∃q ∈ Neigp such that Sq = p. In this case, p �= r and p
executes F -action to be visited for the first time. First, p points out to q (its
predecessor) using Parp. Then, p computes Sp as follows:

- If p has still some non-visited neighbors, i.e., ∃p′ ∈ Neigp such that
Sp′ = idle, then p chooses its minimal non-visited neighbor by ≺p as its
successor in the traversal.

- Otherwise p sets Sp to done.
b) Sp = q (q ∈ Neigp) and Sq = done, i.e., the visiting phase backtracks to p

because the visit from q is terminated. In this case p executes B-action:
- If p has still some non-visited neighbors, then it updates Sp by pointing

out to a new successor (its minimal non-visited neighbor by ≺p).
- Otherwise it sets Sp to done (resp. rdone if p = r).

Therefore, step by step, the visiting phase dynamically built a spanning tree
of the network rooted at r (w.r.t. the Par variable), noted Tree(r). It is easy
to see that this phase follows a DFS order and the number of steps required
for the phase is 2N − 1. Moreover, since the behavior is sequential, the number
of rounds is the same. Finally, Sr is eventually set to rdone meaning that the
visiting phase is terminated for all processors. By this latter action, r initiates
the cleaning phase.

Cleaning Phase. The aim of the cleaning phase is to erase the trace of the last
visiting phase in order to bring the system in the normal initial configuration
2 This phase does not exactly correspond to Algorithms 1 and 2. Indeed, we will see

later that this phase must be modified in order to run correctly in a self-stabilizing
context.

A Snap-Stabilizing DFS with a Lower Space Requirement 39

Algorithm 2. Visiting Phase for p �= r
Inputs:
on read: Neigp: set of neighbors (locally ordered);

Childp: macro of the abnormal trees’ deletion;
on read/write: Quep: variable of the confirmation phase;

Ep: variable of the abnormal trees’ deletion;
Variables: Sp ∈ Neigp ∪ {idle, wait, done, rdone}; Parp ∈ Neigp; Lp ∈ N;

Macros:
WaitOrDonep = wait if (Sp = idle), done otherwise;
Nextp = (q = min≺p{q′ ∈ Neigp :: Sq′ = idle}) if q exists, WaitOrDonep otherwise;
Predp = {q ∈ Neigp :: Sq = p ∧ Eq = C};
RealChildp = {q ∈ Childp :: Eq 	= Ep ⇒ Ep = B}; /∗ valid for Sp 	= idle only ∗/
Predicates:
End(p) ≡ (∀q ∈ Neigp :: Sq 	= idle ⇒ Parq 	= p)
AnswerOK(p) ≡ (Quep = A) ∧ (∀q ∈ Neigp :: Sq 	= idle ⇒ Queq = A)
Forward(p) ≡ (Sp = idle) ∧ (|Predp| = 1) ∧ End(p)
WaitOk(p) ≡ Normal(p) ∧ (Sp = Wait) ∧ [AnswerOK(p) ∨ (∃q ∈ Neigp :: Sq = idle)]
Backward(p) ≡ Normal(p) ∧ (∃q ∈ Neigp :: Sp = q ∧ Parq = p ∧ Sq = done)

∧ [AnswerOK(p) ∨ (∃q ∈ Neigp :: Sq = idle)]
BadSucc(p) ≡ Normal(p) ∧ AnswerOk(p)

∧ (∃q ∈ Neigp :: Sp = q ∧ q /∈ RealChildp ∧ Sq 	= idle)
Actions:
F -action :: Forward(p) → Parp := (q ∈ Predp); Sp := Nextp;

Quep := Q; Lp := LParp + 1; Ep := C;
Fbis-action :: WaitOk(p) → Sp := Nextp;
B-action :: Backward(p) → Sp := Nextp;
IE-action :: BadSucc(p) → Sp := Nextp;

Algorithm 3. Cleaning Phase for p = r
Inputs:
on read: Neigp: set of neighbors (locally ordered);

End(p): predicate of the visiting phase;
on read/write: Sp: variable of the visiting phase;

Predicate:

Clean(p) ≡ (Sp = rdone) ∧ End(p) ∧ (∀q ∈ Neigp :: Sq ∈ {idle, rdone})
Action:

C-action :: Clean(p) → Sp := idle;

again (∀p ∈ V , Sp = idle). Only the root can detect if the visiting phase is
entirely done: when r sets Sr to rdone. Since the root detects the end of the vis-
iting phase, the rdone value is propagated toward the leaves of Tree(r) following
the Par variables (RD-action) to inform all processors of this termination (to
that goal, we add the state rdone into the definition of Sp, ∀p ∈ V \ {r}). Then,
each leaf of Tree(r) successively cleans itself by setting its S variable to idle
(C-action). Therefore, the system eventually reaches the normal initial configu-
ration again. This phase adds 2N −1 steps and the number of additional rounds
is 2H + 1 where H is the height of the tree computed during the visiting phase
(n.b., H is bounded by N − 1).

We presented a non self-stabilizing DFS protocol. Of course, in the context
of self-stabilization, this protocol does not work correctly. So, we must modify
its existing actions as well as we must add some other actions. In particular, we
introduce the confirmation phase to guarantee that a visiting phase initiated by
the root eventually visits all processors. This latter point is crucial to obtain a
snap-stabilizing protocol.

40 A. Cournier, S. Devismes, and V. Villain

Algorithm 4. Cleaning Phase for p �= r
Inputs:
on read: Neigp: set of neighbors (locally ordered);

Parp: variable of the visiting phase;
End(p): predicate of the visiting phase;
Normal(p): predicate of the abnormal trees’ deletion;

on read/write: Sp: variable of the visiting phase;

Predicates:
RdonePar(p) ≡ Normal(p) ∧ (Sp = done) ∧ (SParp = rdone)
Clean(p) ≡ Normal(p) ∧ (Sp = rdone) ∧ End(p) ∧ (∀q ∈ Neigp :: Sq ∈ {idle, rdone})
Actions:
RD-action :: RdonePar(p) → Sp := rdone;
C-action :: Clean(p) → Sp := idle;

Modifying the Existing Actions. Starting from any arbitrary configuration, the
system may contain successors’ cycles. We detect this error by using a new
variable L for each processor. For the root, Lr is the constant 0. Each other
processor p dynamically computes its L variable each time it executes F -action:
Lp := Lq +1 where q is the predecessor of p (n.b., p does not execute F -action if
it has several predecessors). Typically, Lp contains the length of the path from
the root r to p w.r.t. the variable Par. Obviously, in a cycle of successors, at
least one processor p satisfies Lp �= LParp + 1.

In the visiting phase, we have shown that a visited processor p sets Sp to done
(resp. rdone if p = r) when all its neighbors have been visited. In the non self-
stabilizing context, p can easily detect when all neighbors are visited: when ∀p′ ∈
Neigp, Sp′ �= idle. However, in a self-stabilizing scheme, since some neighbors of
p may belong to abnormal visiting phases, this condition is not sufficient. So, in
order to guarantee that every neighbor of p is visited, we introduce a new phase,
the confirmation phase. The aim of this phase is to insure that a processor p,
participating to a visiting phase initiated by r, sets Sp to done (resp. rdone if
p = r) only when its neighbourhood is completely visited by the visiting phase
from r. To apply this concept, we add the state wait into the definition of Sp,
∀p ∈ V \ {r} and we change F -action of the initial protocol: when a processor
p �= r receives a visiting phase (F -action) and satisfies ∀p′ ∈ Neigp, Sp′ �= idle,
it now sets Sp to wait instead of done (see Macros Nextp and WaitOrDonep).
This action initiates the confirmation phase. We now describe in details the
confirmation phase.

Confirmation Phase. To implement this phase, we introduce a new variable Quep

for each processor p: Quep ∈ {Q, R, W , A} if p �= r and Quep ∈ {Q, R, A} if
p = r. The Q and R value are used for resetting the part of the network which is
concerned by the confirmation phase. The W value corresponds to the request of
a processor: “Have I terminated my visiting phase?”. The A value corresponds
to the answer sending by the root (n.b., the root is the only processor able to
generate a A value). We now explain how this phase works.

The confirmation phase concerns processors such that S �= idle only. Variable
Quep of a processor p is initialized by F -action of the visiting phase: Quep := Q.
This value forces all its neighbors satisfying S �= idle to execute Que := R (R-
action). When all the neighbors of p have reset, p also executes Quep := R. Then,

A Snap-Stabilizing DFS with a Lower Space Requirement 41

the R values are propagated up as far as possible following the Par variable (R-
action). By this mechanism, the A values are deleted in the Par paths of p and
its neighbors (in particular, the A values present since the initial configuration).
Thus, from now on, when a A value reaches a requesting processor, this value
cannot come from anyone but r and the processor obviously belongs to the nor-
mal visiting phase. Now, as we have seen before, a processor q (q �= r) eventually
waits a confirmation from the root that all its neighbors are visited (Sq = wait).
In this case, q and its neighbors satisfying S = done execute W -action3, i.e.,
Que := W meaning that they are now waiting for an answer from r. W value
is propagated toward the root if possible (a processor p propagates the W value
when all its children satisfies Que /∈ {Q, R}). When the W value reaches the
children of r, r executes its A-action: it sends an answer (A) to its children and
so on. So, if q and its neighbors receive this answer (A), q is sure that it and
all its neighbors belong to Tree(r). In this case, q satisfies AnswerOk(q) and
executes Fbis-action to set Sq to done meaning that the visiting phase from it
is now terminated and so on.

We now explain why a visited processor needs to initiate the confirmation
phase only once: when it executes F -action. Assume that a processor of the vis-
iting phase initiated by r, p, has a neighbor q such that q belongs to an abnormal
visiting phase. We have already seen that, when p is visited for the first time
(F -action), it also executes Quep := Q. This action initiates the confirmation
phase and forces q to execute Queq := R (R-action). This value erases all A
values in the Par path of q. Since only r can generate a A value, q never receives
any A. Thus, p cannot satisfy AnswerOk(p) while q belongs to an abnormal
visiting phase. As a consequence, p cannot set Sp to done (resp. rdone if p = r)
while one of its neighbor belongs to an abnormal visiting phase (see Fbis-action
and B-action).

Unfortunately, starting from the normal initial configuration, this phase
strongly slows down the initial protocol, nevertheless, it does not generate any
deadlock. The worst case (starting from the normal initial configuration) is ob-
tained with a computed tree of height in O(N) with a number of leaves also
in O(N) at a distance in O(N) of the root. In that case, Θ(N) W -actions are
initiated by these leaves. So, the complexity is in Θ(N2) steps. Due to the se-
quentiality along the path from a requesting leaf to the root, the complexity in
terms of rounds is also in Θ(N2).

Of course, we have now to deal with abnormal configurations. We first in-
troduce a new action in the visiting phase to remove some deadlock due to the
variables’ initial configurations of the visiting phase itself.

IE-Action. To prevent the system from any deadlock, we add IE-action to solve
a case which can only appear in the initial configuration: The active end of
Tree(r) (i.e., the only processor p ∈ Tree(r) such that End(p) ∧ Sp /∈ {done,

3 Starting from an arbitrary configuration, the neighbors of q satisfying S = done can
belong to Tree(r), so, they must also receive an acknowledgment from r so that q
knows that they are not in an abnormal visiting phase.

42 A. Cournier, S. Devismes, and V. Villain

Algorithm 5. Confirmation Phase for p = r
Inputs:
on read: Neigp: set of neighbors (locally ordered);

Sp: variable of the visiting phase;
RealChildp: predicate of the visiting phase;

Variable: Quep ∈ {Q, R, A};
Predicates:
Require(p) ≡ (Sp 	= idle) ∧ [[Quep = Q∧ (∀q ∈ Neigp :: Sq 	= idle ⇒ Queq ∈ {Q, R})]

∨ [Quep = A ∧ (∃q ∈ Neigp :: (Sq 	= idle ∧ Queq = Q)
∨ (q ∈ RealChildp ∧ Queq = R))]]

Answer(p) ≡ (Sp 	= idle) ∧ (Quep = R) ∧ (∀q ∈ RealChildp :: Queq ∈ {W ,A})
∧ (∀q ∈ Neigp :: Sq 	= idle ⇒ Queq 	= Q)

Actions:
R-action :: Require(p) → Quep := R;
A-action :: Answer(p) → Quep := A;

Algorithm 6. Confirmation Phase for p �= r
Inputs:
on read: Neigp: set of neighbors (locally ordered);

Sp, Parp: variables of the visiting phase;
RealChildp: macro of the visiting phase;
End(p): predicate of the visiting phase;
Normal(p): predicate of the abnormal trees’ deletion;

Variable: Quep ∈ {Q, R, W , A};
Predicates:
Require(p) ≡ Normal(p) ∧ (Sp 	= idle)

∧ [[Quep = Q ∧ (∀q ∈ Neigp :: Sq 	= idle ⇒ Queq ∈ {Q,R})]
∨ [Quep ∈ {W ,A}∧ (∃q ∈ Neigp :: (Sq 	= idle ∧ Queq = Q)
∨ (q ∈ RealChildp ∧ Queq = R))]]

WaitAnswer(p) ≡ Normal(p) ∧ (Sp 	= idle) ∧ (Quep = R) ∧ (QueP arp = R)
∧ (∀q ∈ Neigp :: Sq 	= idle ⇒ Queq 	= Q)
∧ [End(p) ⇒ (Sp 	= rdone∧ (Sp ∈ Neigp ⇒ SSp 	= idle))]
∧ [¬End(p) ⇒ (∀q ∈ RealChildp :: Queq ∈ {W ,A})]

Answer(p) ≡ Normal(p) ∧ (Sp 	= idle) ∧ (Quep = W) ∧ (QueP arp = A)
∧ (∀q ∈ RealChildp :: Queq ∈ {W , A})
∧ (∀q ∈ Neigp :: Sq 	= idle ⇒ Queq 	= Q)

Actions:
R-action :: Require(p) → Quep := R;
W -action :: WaitAnswer(p) → Quep := W ;
A-action :: Answer(p) → Quep := A;

rdone}) can designate as successor a processor q (i.e., Sp = q) such that q be-
longs to Tree(r). Now, thanks to the confirmation phase, p eventually knows
that it does not designate a “good” successor because p and q receives an ac-
knowledgment (A) from r. So, p eventually changes its successor by IE-action.
In the following, IE-action is considered as an action of the visiting phase. This
action is enough to break the deadlock of the visiting phase rooted at r. This
action (and the confirmation phase associated) does not add a significant cost.

We need now to deal with abnormal visiting phases, i.e., visiting phases
rooted at another processor than r. The abnormal trees’ deletion we now intro-
duce erases these abnormal visiting phases.

Abnormal Trees’ Deletion. We first explain how to detect the abnormal visiting
phases. In a normal visiting phase, each non-root processor p must maintain
some properties based on the value of its variables and that of its parent. We
list these conditions below:

A Snap-Stabilizing DFS with a Lower Space Requirement 43

1. If p is involved in the DFS Wave (Sp �= idle) and p is designated as successor
by its parent (SParp = p) then Sp must be different of the rdone value.
Indeed, the rdone value is generated by the root only and is propagated
down in the spanning tree.

2. If p is involved in the DFS Wave and p is not designated as successor by
its parent (SParp �= p) then the visiting phase from p is terminated, i.e.,
Sp ∈ {done, rdone}.

- If Sp = rdone then its parent, Parp, must satisfy SParp = rdone. Indeed,
the rdone value is propagated from the root to the leaves of Tree(r) after
the end of the visiting phase.

- If Sp = done then, as SParp �= p, the visiting phase has backtracked to
Parp (by B-action). So, either Parp points out to another successor,
i.e., SParp ∈ NeigParp \ {p}; or the visiting phase from Parp is also
terminated, i.e., SParp ∈ {done, rdone}. More simply, if SParp �= p and
Sp = done then, SParp /∈ {idle, wait}.

3. Finally, if p is involved in the DFS Wave and p satisfies 1. and 2. (Predicate
GoodPar(p)) then its level Lp must be equal to one plus the level of its
parent (Predicate GoodLevel(p)).

If one of these conditions is not satisfied by p then AbRoot(p) is true. Now,
starting from any configuration, p may satisfy AbRoot. We can then remark
that the abnormal visiting phase from p shapes an abnormal tree noted Tree(p):
∀q ∈ V , q ∈ Tree(p) if and only if there exists a sequence of nodes (p0 = p), ...,
pi, ..., pk such that, ∀i ∈ [1...k], pi ∈ Childpi−1 (among the neighbors designating
pi−1 with Par, only those satisfying S �= idle ∧ ¬AbRoot are considered as pi−1
children).

We now explain how the protocol cleans these abnormal trees. In order to
clean the abnormal tree Tree(p), we cannot simply set Sp to idle. Since some
processors in the visiting phase can be in Tree(p). If we simply set Sp to idle,
then p can participate again to the visiting phase of the tree of which it was the
root. As we do not assume the knowledge of any bound on the L values (we may
assume that the maximum value of L is any upper bound of N), this scheme
can progress infinitely often, and the system contains an abnormal tree which
can prevent the progression of the tree of the normal visiting phase (Tree(r)).
We solve this problem by paralyzing the progress of any abnormal tree before
removing it. First, a processor p can be visited from its neighbor q only if q
satisfies Sq = p and Eq = C (see Predp). Then, if p hooks on to Tree(q) (F -
action), it also executes Ep := C. If q is an abnormal root, then it sets its
variable Eq to B and broadcasts this value in its tree (and only in its tree).
When q receives an acknowledgment of all its children (Value F of Variable E),
it knows that all the processors p of its tree have Ep = F and no processor
can now participate in the visiting phase from any p. So, q can leave its tree
(EC-action) and it will be no more visited by this abnormal visit. Thus, by this
mechanism, all the abnormal trees eventually disappear.

The management of the E variables adds new kind of errors. Indeed, ∀p,
q ∈ V such that Sp �= idle ∧ Sq �= idle ∧ Parq = p ∧ ¬AbRoot(q), p and

44 A. Cournier, S. Devismes, and V. Villain

Algorithm 7. Abnormal trees’ Deletion for p = r
Inputs:
on read: Neigp: set of neighbors (locally ordered);

Sp, Parp, Lp: variables of the visiting phase;
Constant: Ep = C;

Macros:
Childp = {q ∈ Neigp :: Parq = p ∧ Sq 	= idle ∧ Lq = Lp + 1 /∗ valid for Sp 	= idle only ∗/

∧ (Sp = q ⇒ Sq 	= rdone) ∧ [[Sp 	= q] ⇒ [(Sq = rdone ∧ Sp = rdone) ∨ (Sq = done)]]};

q must satisfy (Ep, Eq) ∈ {(B,C), (B,B), (B,F), (F ,F), (C,C)}. Predicates
FCorrection(p), BCorrection(p), and CCorrection(p) allows to detect if this
condition is not satisfied by p and q. Now, we can remark that these kinds of
error are local and can only appear in the initial configuration. So, we simply
correct it by executing Sq := idle and Eq := C (EC-action).

To remove an abnormal tree, any processor in the tree has at most three
actions to execute. So, the additional cost of this phase is in Θ(N) by tree for
both steps and rounds. So, in the worst case (Θ(N) abnormal trees), the cost is
in Θ(N2) steps but is still in Θ(N) rounds because trees are removed in parallel.

Nevertheless, the presence of abnormal trees in the system involves an over-
cost in terms of steps for the visiting, cleaning, and confirmation phases, respec-
tively (the overcost in terms of rounds is not significant because the abnormal
trees are removed in Θ(N) rounds). Indeed, each time a processor p initiates a
question (in the confirmation phase), this question can be propagated to (in the
worst case) all the processors of the network. So, the overcost is O(N) steps for
each processor (O(N)) of each tree (O(N)), i.e., O(N3) steps. Concerning now
the visiting phase, a processor p such that p �= r can execute an action of the vis-
iting phase while it is in an abnormal tree (because of the initial configuration)
or can hook on to abnormal tree by F -action. But, in both cases, a confirmation
phase will be initiated (by p or one of its descendants) before p executes another
action of the visiting phase. As explained before, this phase will lock the visiting
phase for p until it leaves its tree. In the same way, p may execute its cleaning
phase once (RD-action and C-action) to leave its tree but the next time it hook
on to an abnormal tree, it will be lock by the confirmation phase and will ex-
ecute no action of the cleaning phase until it leaves the tree by the abnormal
trees’ deletion. So, the overcost is O(1) steps for each processor (O(N)) of each
tree (O(N)), i.e., O(N2) steps. Hence, globally, the presence of abnormal trees
in the system involves an overcost in terms of steps which is significant for the
confirmation phase only: O(N3) steps.

Snap-stabilization of the Protocol. From the previous discussion, we know that,
from normal configurations (i.e., configurations containing no abnormal trees),
a traversal rooted at r is completely performed (i.e., visiting, cleaning, and con-
firmation phases) in O(N2) steps. Also, we know that the presence of abnormal
trees in the system involves an overcost of O(N3) steps (mainly due to the con-
firmation phase). Finally, these abnormal trees are removed from the systems in
O(N2) actions of the abnormal trees’ deletion. So, despite the daemon (weakly

A Snap-Stabilizing DFS with a Lower Space Requirement 45

Algorithm 8. Abnormal trees’ Deletion for p �= r
Inputs:
on read: Neigp: set of neighbors (locally ordered);

Parp, Lp: variables of the visiting phase;
on read/write: Sp: variable of the visiting phase;

Variable: Ep ∈ {B, F , C};
Macros:
Childp = {q ∈ Neigp :: Parq = p ∧ Sq 	= idle ∧ Lq = Lp + 1 /∗ valid for Sp 	= idle only ∗/

∧ (Sp = q ⇒ Sq 	= rdone)
∧ [[Sp 	= q] ⇒ [(Sq = rdone ∧ Sp = rdone) ∨ (Sq = done ∧ Sp /∈ {idle, wait})]]};

Predicates:
GoodLevel(p) ≡ (Sp 	= idle) ⇒ (Lp = LParp + 1)
GoodPar(p) ≡ (Sp 	= idle) ⇒ [[SParp = p ⇒ Sp 	= rdone]

∧ [(SParp 	= p) ⇒ ((Sp = rdone ∧ SP arp = rdone)
∨ (Sp = done ∧ SParp /∈ {idle, wait}))]]

AbRoot(p) ≡ GoodPar(p) ⇒ ¬GoodLevel(p)
FreeError(p) ≡ (Sp 	= idle) ⇒ (Ep = C)
BadC(p) ≡ (Sp 	= idle ∧ Ep = C ∧ EP arp = F)
Normal(p) ≡ ¬AbRoot(p) ∧ FreeError(p) ∧ ¬BadC(p)
BError(p) ≡ (Sp 	= idle) ∧ (Ep = C) ∧ [¬AbRoot(p) ⇒ (EParp = B)]

∧ (∀q ∈ Childp :: Eq = C)
FError(p) ≡ (Sp 	= idle) ∧ (Ep = B) ∧ [¬AbRoot(p) ⇒ (EParp = B)]

∧ (∀q ∈ Childp :: Eq = F)
FAbRoot(p) ≡ (Ep = F) ∧ AbRoot(p)
BCorrection(p) ≡ (Sp 	= idle) ∧ (Ep = B) ∧ ¬AbRoot(p) ∧ (EParp 	= B)
FCorrection(p) ≡ (Sp 	= idle) ∧ (Ep = F) ∧ ¬AbRoot(p) ∧ (EParp = C)
CCorrection(p) ≡ (Sp 	= idle) ∧ (Ep = C) ∧ ¬AbRoot(p) ∧ (EParp = F)
CError(p) ≡ FAbRoot(p) ∨ BCorrection(p) ∨ FCorrection(p) ∨ CCorrection(p)
Actions:
EB-action :: BError(p) → Ep := B;
EF -action :: FError(p) → Ep := F ;
EC-action :: CError(p) → Ep := C; Sp := idle;

fair or unfair), the abnormal trees cannot prevent forever the progression of the
visiting phase rooted at r. Then, the normal visiting phase terminates at r in a
finite number of steps (O(N3)). After this termination, the trace of the visiting
phase are erased by the cleaning phase in Θ(N) steps. So, it is easy to see that,
in the worst case, if the daemon tries to prevent r to initiate a new visiting phase,
the system eventually reaches the normal initial configuration. In this configu-
ration, r is the only enabled processor and F -action is the only enabled action
at r. So, r executes F -action in the next step and we obtain a contradiction.
Hence, from any configuration, the visiting phase starts at r after O(N3) steps.

Since r executes F -action, the visiting phase (rooted at r) sequentially pro-
gresses as deeply as possible in the network. When the visit cannot progress any
more, the visit backtracks to the latest visited processor having some non-visited
neighbors, if any. The visit terminates when it backtracks to r and r considers
that its neighbourhood is completely visited. Obviously, to be DFS, the tra-
versal performed by the visiting phase must not backtrack too earlier, i.e., the
traversal must backtrack from p only when ∀q ∈ Neigp, q ∈ Tree(r). Now, this
property is guaranteed by the confirmation phase. Indeed, since p hooks on to
the normal tree (Tree(r)) by F -action, the confirmation phase insures p will
executes Sp = done (resp. rdone if p = r) only when ∀q ∈ Neigp, q ∈ Tree(r).
Finally, we have already seen that the visiting phase rooted at r is executed in
O(N3) steps.

46 A. Cournier, S. Devismes, and V. Villain

Hence, by Definition 1, it is easy to see that Algorithm DFS is snap-
stabilizing for Specification 1 under an unfair daemon (see [5] for a detailed
proof).

Complexity Issues. From the previous explanations, we can deduce that the
delay to start a DFS Wave is O(N3) steps and O(N2) rounds, respectively.
Similarly, a complete DFS Wave is executed in O(N3) steps and O(N2) rounds,
respectively. Consider now the space requirement. We do not make any bound
on the value of the L variable but it is easy to see that Algorithm DFS remains
valid if we bound the maximal value of L by N . So, by taking account of the
other variables, we can deduce that Algorithm DFS is in O(Δ2 × N) states.

4 Conclusion

We proposed in [4] the first snap-stabilizing DFS wave protocol for arbitrary
rooted networks assuming an unfair daemon. Until this paper, it was the only
snap-stabilizing protocol solving this problem. Like in [4], the snap-stabilizing
DFS wave protocol presented in this paper does not use any pre-constructed
spanning tree and does not need to know the size of the network. Moreover,
it is also proven assuming an unfair daemon. However, using this protocol, a
complete DFS Wave is executed in O(N2) rounds and O(N3) steps while we
obtain O(N) rounds and O(N2) steps in [4] for the same task. But, our new
solution brings some strong enhancements. In one hand, the new protocol works
on a semi-anonymous network instead of a completely identified network. In the
other hand, it requires O(Δ2 × N) states per processor instead of O(NN).

References

1. L Blin, A Cournier, and V Villain. An improved snap-stabilizing pif algorithm.
In DSN SSS’03 Workshop: Sixth Symposium on Self-Stabilizing Systems (SSS’03),
pages 199–214. LNCS 2704, 2003.

2. A Bui, AK Datta, F Petit, and V Villain. State-optimal snap-stabilizing PIF in
tree networks. In Proceedings of the Fourth Workshop on Self-Stabilizing Systems,
pages 78–85, Austin, Texas, USA, June 1999. IEEE Computer Society Press.

3. A Cournier, AK Datta, F Petit, and V Villain. Enabling snap-stabilization. In 23th
International Conference on Distributed Computing Systems (ICDCS 2003), pages
12–19, Providence, Rhode Island USA, May 19-22 2003. IEEE Computer Society
Press.

4. A Cournier, S Devismes, F Petit, and V Villain. Snap-stabilizing depth-first search
on arbitrary networks. In OPODIS’04, International Conference On Principles Of
Distributed Systems Proceedings, pages 267–282. LNCS, 2004.

5. A Cournier, S Devismes, and V Villain. A snap-stabilizing dfs with a lower space
requirement. Technical Report 2005-05, LaRIA, CNRS FRE 2733, 2004.

6. AK Datta, C Johnen, F Petit, and V Villain. Self-stabilizing depth-first token
circulation in arbitrary rooted networks. Distributed Computing, 13(4):207–218,
2000.

A Snap-Stabilizing DFS with a Lower Space Requirement 47

7. EW Dijkstra. Self stabilizing systems in spite of distributed control. Communica-
tions of the Association of the Computing Machinery, 17:643–644, 1974.

8. S Dolev, A Israeli, and S Moran. Uniform dynamic self-stabilizing leader election.
IEEE Transactions on Parallel and Distributed Systems, 8(4):424–440, 1997.

9. ST Huang and NS Chen. Self-stabilizing depth-first token circulation on networks.
Distributed Computing, 7:61–66, 1993.

10. C Johnen, C Alari, J Beauquier, and AK Datta. Self-stabilizing depth-first token
passing on rooted networks. In WDAG97 Distributed Algorithms 11th International
Workshop Proceedings, Springer-Verlag LNCS:1320, pages 260–274, Saarbrücken,
Germany, September 24-26 1997. Springer-Verlag.

11. C Johnen and J Beauquier. Space-efficient distributed self-stabilizing depth-first
token circulation. In Proceedings of the Second Workshop on Self-Stabilizing Sys-
tems, pages 4.1–4.15, Las Vegas (UNLV), USA, May 28-29 1995. Chicago Journal
of Theoretical Computer Science.

12. F Petit and V Villain. Time and space optimality of distributed depth-first to-
ken circulation algorithms. In Proceedings of DIMACS Workshop on Distributed
Data and Structures, pages 91–106, Princeton, USA, May 10-11 1999. Carleton
University Press.

13. G Tel. Introduction to distributed algorithms. Cambridge University Press, Cam-
bridge, UK, Second edition 2001.

Self-stabilization of Byzantine Protocols

Ariel Daliot and Danny Dolev

School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Israel

{adaliot, dolev}@cs.huji.ac.il

Abstract. Awareness of the need for robustness in distributed systems
increases as distributed systems become integral parts of day-to-day
systems. Self-stabilizing while tolerating ongoing Byzantine faults are
wishful properties of a distributed system. Many distributed tasks (e.g.
clock synchronization) possess efficient non-stabilizing solutions toler-
ating Byzantine faults or conversely non-Byzantine but self-stabilizing
solutions. In contrast, designing algorithms that self-stabilize while at
the same time tolerating an eventual fraction of permanent Byzantine
failures present a special challenge due to the “ambition” of malicious
nodes to hamper stabilization if the systems tries to recover from a cor-
rupted state. This difficulty might be indicated by the remarkably few
algorithms that are resilient to both fault models. We present the first
scheme that takes a Byzantine distributed algorithm and produces its
self-stabilizing Byzantine counterpart, while having a relatively low over-
head of O(f ′) communication rounds, where f ′ is the number of actual
faults. Our protocol is based on a tight Byzantine self-stabilizing pulse
synchronization procedure. The synchronized pulses are used as events
for initializing Byzantine agreement on every node’s local state. The set
of local states is used for global predicate detection. Should the global
state represent an illegal system state then the target algorithm is reset.

1 Introduction

On-going faults whose nature is not predictable or that express complex behavior
are most suitably addressed in the Byzantine fault model. It is the preferred fault
model in order to seal off unexpected behavior within limitations on the number
of concurrent faults. Most distributed tasks require the number of concurrent
Byzantine faults, f , to abide by the ratio of 3f < n, where n is the network
size. See [13] for impossibility results on several consensus related problems such
as clock synchronization. Additionally, it makes sense to require systems to re-
sume operation after a major failure without the need for an outside intervention
and/or a restart of the system from scratch. E.g. systems may occasionally ex-
perience short periods in which more than a third of the nodes are faulty or
messages sent by all nodes may be lost for some time due to a network failure.

Such transient violations of the basic fault assumptions may leave the system
in an arbitrary state from which the protocol is required to resume in realizing its
task. Typically, Byzantine algorithms do not ensure convergence in such cases,

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 48–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Self-stabilization of Byzantine Protocols 49

as strong assumptions are usually made on the initial state and thus merely
focus on preventing Byzantine faults from notably shifting the system state
away from the goal. A self-stabilizing algorithm bypasses this limitation by being
designed to converge within finite time to a desired state from any initial state.
Thus, even if the system loses its consistency due to a transient violation of
the basic fault assumptions (e.g. more than a third of the nodes being faulty,
network disconnected, etc.), then once the system becomes coherent again the
protocol will successfully realize the task, irrespective of the resumed state of
the system. In trying to combine both fault models, Byzantine failures present
a special challenge for designing stabilizing algorithms due to the “ambition” of
malicious nodes to incessantly hamper stabilization, as might be indicated by
the remarkably few algorithms resilient to both fault models.

We present an algorithm for transforming any Byzantine protocol to its self-
stabilizing semi-synchronous counterpart, which is to the best of our knowledge,
the first general scheme to do so for arbitrary protocols in the Byzantine fault
model. Our result operates in the semi-synchronous network model typical of
Byzantine protocols, though our scheme will also transform any asynchronous
algorithm into its self-stabilizing semi-synchronous counterpart. Transient fail-
ures can practically be equivalent to the existence of an unbounded number of
concurrent Byzantine failures. No distributed algorithm can reach its goal de-
terministically, in the face of permanent unbounded Byzantine failures, unless
digital signatures are used. In a self-stabilizing paradigm, using digital signatures
to counter Byzantine nodes exposes the protocols to “replay-attack” which might
empty its usefulness.

Thus, deterministic protocols that tolerate permanent unbounded Byzantine
failures by using digital signatures do not guarantee operation from arbitrary
states and are thus not self-stabilizing. Hence, in order to self-stabilize and tol-
erate unbounded Byzantine failures it is essential to assume that eventually the
bound on the permanent number of Byzantine failures is less than a third of the
network. From this arbitrary state our protocol causes the user’s target algo-
rithm to converge efficiently. Therefore our result is stronger than just resilience
to permanent unbounded Byzantine faults.

The algorithm assumes the existence of a module that delivers synchronized
pulses to all the nodes. The function of the pulse synchronization is to align the
activities of the participating nodes in a self-stabilizing and fault-tolerant man-
ner. The use of an external pulse module subjects the protocol to a single point of
failure. This necessitates an internal pulse mechanism in order to guarantee con-
tinuous function of the system at times that the external pulse is missing, which
obliterates the benefit of circumventing any internal mechanisms with external
ones. The only distributed internal protocols that delivers periodic synchronized
pulses in a self-stabilizing manner tolerant to Byzantine faults are [7,9].

The idea of the algorithm, in a bird’s-eye view, is to run at each node, in
the background, the self-stabilizing Byzantine protocol that periodically invokes
tightly synchronized pulses. Subsequent to a pulse, the node initiates Byzan-
tine agreement on its local application state. This ensures that following some

50 A. Daliot and D. Dolev

bounded time there is consensus on the local state of every node (inclusive of
faulty nodes). All correct nodes then evaluate whether this global application
snapshot corresponds to a legal state of the basic program and, if required,
collectively reset it at the next pulse.

The overhead of our protocol is O(f ′) communication rounds, where f ′ is
the actual number of permanent faults, in addition to the time complexity of
the transformed non-stabilizing algorithm. We utilize a Byzantine Agreement
protocol that works in a time-driven manner that we have presented in [6], which
makes the agreement procedure progress as a function of the actual message
transmission times and not the upper bound on the message transmission times.
Consequently, the additional overhead can in effect be very low.

We postulate that the semi-synchronous network model is a very realistic and
ubiquitous model that is essentially the underlying setting of overlay networks
and even the internet. Our result implies that the semi-synchronous network
model allows for a very extensive treatment of different models of fault tolerance.

2 Related Work

There are very few specific protocols that tolerate both transient failures as
well as permanent Byzantine faults. In this section we survey most of them.
Towards the end of the section we describe a few general schemes that aim at
stabilizing arbitrary asynchronous non fault tolerant algorithms. To the best of
our knowledge our result is the only general scheme that transforms an arbitrary
Byzantine algorithm into a multitolerant program that is self-stabilizing in the
presence of permanent Byzantine failures.

The concept of multitolerance is coined by Kulkarni and Arora [2,17] to
describe the property of a system to tolerate multiple fault-classes. They present
a component based method for designing multitolerant programs. It is shown how
to step-wise add tolerance to the different fault-classes separately. They design as
an example a repetitive agreement protocol tolerant to Byzantine failures and to
transient failures. Similarly, mutual exclusions for transient and permanent (non
Byzantine) faults is designed. In [16] a multitolerant program for distributed
reset is designed that tolerates transient and permanent crash failures. It is
not shown how the method can be utilized for designing arbitrary algorithms,
rather, particular problems are addressed and protocols are specifically designed
for these problems using the method.

Nesterenko and Arora [20] define and formalize the notion of local tolerance
in a multitolerant fault model of unbounded Byzantine faults that eventually
comply with the 3f < n ratio. Local tolerance refers to the property of faults
being contained within a certain distance of the faulty nodes so that nodes
outside this containment radius are able to eventually attain correct behavior.
They present two locally tolerant Byzantine self-stabilizing protocols for the
particular problems of graph coloring and the dining philosophers problem.

Other examples are the two randomized self-stabilizing Byzantine clock syn-
chronization algorithms presented by Dolev and Welch [12]. Both protocols have

Self-stabilization of Byzantine Protocols 51

exponential convergence time. Our deterministic self-stabilizing Byzantine clock
synchronization algorithm in [8] converges in linear time1.

Many papers have been published that seek to find a universal technique
to convert an arbitrary asynchronous protocol into a self-stabilizing equivalent.
Thus these works have very limited handling of faults besides the transient faults.
The concept of a self-stabilizing extension of a non-stabilizing protocol is brought
by Katz and Perry [15]. They show how to compile an arbitrary asynchronous
protocol into a self-stabilizing equivalent by centralized predicate evaluation.
A self-stabilizing version of Chandy-Lamport snapshots that is recurrently ex-
ecuted is developed. The snapshot is evaluated for a global inconsistency and
a distributed reset is done if necessary. This is improved by the local checking
method of Awerbuch et al., [4]. Kutten and Patt-Shamir [18] present a time-
adaptive transformer which stabilizes any non-stabilizing protocol in O(f ′) time
but on the expense of the space and communication complexities. A stabilizer
that takes any off-line or on-line algorithm and “compiles” a self-stabilizing ver-
sion of it is presented by Afek and Dolev [1]. The stabilizer has the advantage
of being local, whereby local it is meant that as soon as the system enters a
corrupt state, that fact is detected and second that the expected computation
time lost in recovering from the corrupted state is proportional to the size of the
corrupted part of the network. In a seminal paper by Arora and Gouda [3] a dis-
tributed reset protocol for shared memory is presented which tolerates fail-stop
failures. Note that the fail-stop failure assumption (as opposed to the sudden
crash faults) makes the protocol non-masking and thus doesn’t truly tolerate
permanent faults. Moreover it has a relatively costly convergence time.

Gopal and Perry [14] present a framework for unifying process faults and
systemic failures, i.e. ongoing faults and self-stabilization. Their scheme works
in a fully synchronous system and is a “compiler” that creates a self-stabilizing
version of any fault-tolerant fully synchronous algorithm. They assume the non-
stabilizing algorithm works in synchronous rounds. Assuming a fully synchronous
system is a strong assumption as it obliterates the need to consider the loss of
synchronization of the rounds following a transient failure. Their scheme only
assumes the loss of agreement on the round number itself. To overcome this
following a systemic (transient) failure, at each round some sort of “agreement”
is done on the round number. They assume the register holding the round number
is unbounded, which is not a realistic assumption. In a self-stabilizing scheme a
transient failure can cause the register to reach its upper limit. Thus they do not
handle the overflow and wrap-around of the round number which is a major flaw.
The permanent faults that the framework tolerates are any corruption of process
code. This may seem very similar to Byzantine faults but the difference hinges
on a subtle but significant dissimilarity. It is assumed that corruption of process
code cannot result in malicious or two-faced behavior whereas Byzantine failures
allow for any adversary behavior. This difference results in the FLM result [13]

1 Note that the pulse synchronization procedure used in [8] has a flaw, as pointed
out by Mahyar Malekpour from NASA LaRC and Radu Siminiceanu from NIA. A
correct version can be found in [9].

52 A. Daliot and D. Dolev

for Byzantine behavior, in which at least 3f + 1 nodes are required to mask f
failures. Conversely, corruption of process code imposes no such bound on the
number of concurrent failures.

Note that being in an illegal global state is a stable predicate of the system
state of a non-stabilizing program as otherwise it would either be self-stabilizing
or not have the closure property that is required of any “rational” non-stabilizing
algorithm (i.e. if in a legal state then stay in a legal state). A more general way
of presenting our scheme is as a self-stabilizing Byzantine method for detection
of stable predicates in semi-synchronous networks (see [21] for non fault-tolerant
predicate detection in semi-synchronous networks). Distributed reset is just one
particular action that can be done upon the detection of a certain predicate.
Examples of other predicate detection uses are deadlock detection, threshold
detection, progress detection, termination detection, state variance detection
(e.g. clock synchronization), among others.

3 Model and Definitions

The environment is a semi-synchronous network model of n nodes that com-
municate by exchanging messages. We assume that the message passing allows
for an authenticated identity of the senders. The communication network does
not guarantee any order on messages among different nodes. Individual nodes
have no access to a central clock and there is no external pulse system. The
hardware clock rate (referred to as the physical timers) of correct nodes has a
bounded drift, ρ, from real-time rate. When the system is not coherent then
there can be an unbounded number of concurrent Byzantine faulty nodes, the
turnover rate between faulty and non-faulty nodes can be arbitrarily large and
the communication network may behave arbitrarily.

Definition 1. A node is non-faulty at times that it complies with the following:
1. Obeys a global constant 0 < ρ << 1 (typically ρ ≈ 10−6), such that for every

real-time interval [u, v] :
(1 − ρ)(v − u) ≤ ‘physical timer’(v) − ‘physical timer’(u) ≤ (1 + ρ)(v − u).

2. Operates according to the instructed protocol.
3. Processes any message of the instructed protocol within π real-time units of

arrival time.

A node is considered faulty if it violates any of the above conditions. We
allow for Byzantine behavior of the faulty nodes. A faulty node may recover from
its faulty behavior once it resumes obeying the conditions of a non-faulty node.
For consistency reasons, the “correction” is not immediate but rather takes a
certain amount of time during which the non-faulty node is still not counted as
a correct node, although it supposedly behaves “correctly”2. We later specify
the time-length of continuous non-faulty behavior required of a recovering node
to be considered correct.
2 For example, a node may recover with arbitrary variables, which may violate the

validity condition if considered correct immediately.

Self-stabilization of Byzantine Protocols 53

Definition 2. The communication network is non-faulty at periods that it
complies with the following:

1. Any message sent by any non-faulty node arrives at every non-faulty node
within δ real-time units;

2. All messages sent by a non-faulty node and received by a non-faulty node
obey FOFI order.

Basic Notations:

– d ≡ δ + π. Thus, when the communication network is non-faulty, d is the
upper bound on the elapsed real-time from the sending of a message by a
non-faulty node until it is received and processed by every correct node.

– A “pulse” is an internal event targeted to happen in tight synchrony at
all correct nodes. A Cycle is the “ideal” time interval length between two
successive pulses that a node invokes, as given by the user. The actual cycle
length has upper and lower bounds and can be shortened to cyclemin by
faulty nodes. (see [9] for the details of the pulse synchronization).

– σ represents the upper bound on the real-time between the invocation of the
pulses of different correct nodes (tightness of pulse synchronization)3.

– pulse conv represents the convergence time of the underlying pulse synchro-
nization module.

– agreement duration represents the maximum real-time required to complete
the chosen Byzantine consensus/agreement procedure4.

Note that n, f and Cycle are fixed constants and thus non-faulty nodes do
not initialize with arbitrary values of these constants. It is required that Cycle is
chosen s.t. cyclemin is large enough to allow our protocol to terminate in between
pulses.

A recovering node should be considered correct only once it has been con-
tinuously non-faulty for enough time to enable it to go through a complete
“synchronization process”. This is the time it takes, from any state, to complete
two concomitant pulses that are in synchrony with all other correct nodes.

Definition 3. A node is correct following pulse conv + 2 · Cycle + σ real-time
of continuous non-faulty behavior.

Definition 4. The system is said to be coherent at times that it complies with
the following:

1. At least n − f of the nodes are correct, where n ≥ 3f + 1;
2. The communication network has been continuously non-faulty for at least

pulse conv + 2 · Cycle + σ real-time units.

3 The specific pulse synchronization used ([9]) achieves σ ≤ 3d.
4 We differentiate between consensus on an initial value held by all nodes and agree-

ment on an initial value sent by a specific possibly faulty node.

54 A. Daliot and D. Dolev

The reference to correct instead of non-faulty nodes circumvents the ability
of the turnover rate between faulty and non-faulty behavior of nodes to hinder
the system from ever converging to a legal state. Hence, if the system is not
coherent then there can be an unbounded number of concurrent faulty nodes;
the turnover rate between faulty and non-faulty nodes can be arbitrarily large
and the communication network may behave arbitrarily. When the system is
coherent, then the network and a large enough fraction of the nodes (n−f) have
been non-faulty for a sufficiently long time period for the pre-conditions for con-
vergence of the protocol to hold. The assumption in this paper, as underlies any
other self-stabilizing algorithm, is that eventually the system becomes coherent.
Note that being coherent does not imply that the system is in a legal state.

The self-stabilization paradigm assumes that all variables and program reg-
isters are volatile and thus prone to corruption or can initialize with arbitrary
assignments. Conversely, it assumes that the code (the instructed protocol) is not
dynamic and can thus be stored on non-volatile or non-corruptible storage. Fur-
thermore, it is assumed in the paradigm that any access to an external module
utilized by the system is eventually restored. E.g., any dependency on continu-
ous time correlated to real-time without access to an external time source, can
not be handled in the context of self-stabilization as no algorithm can restore
the reference to external time without access to the external time source.

A local state of a node is comprised of the program counter and an assign-
ment of values to the local variables. A node switches from one local state to
another through a computation step. A global state of a system of nodes is the
set of local states of its constituents nodes and the contents of the FIFO com-
munication channels. A local application state is a subset of the variables of the
local state that are relevant for the application. Two local states are said to
be distinct if they represent local states on different nodes. A global application
state is a collection of all the distinct constituent local application states at a
certain moment. A global application snapshot is any collection of distinct local
application states. An execution of a program P is a possibly infinite sequence
of global states in which each element follows from its predecessor by the execu-
tion of a single computation step of P. We define E to be the set of all possible
execution sequences of a program P.

Definition 5. An initial state is said to be normal if the program counter of
each correct node is 0 and the communication channels are empty.

Definition 6. A normal execution is an execution whose initial state is nor-
mal and has entirely occurred while the system is coherent.

Definition 7. A global application state is said to be legal if it could occur in
a normal execution.

Definition 8. A legal execution is an execution that is a non-empty suffix of
a normal execution.

We define NE, (NE ⊂ E), to be the set of normal executions of P (also
denoted NE(P)). Equivalently, we define LE, (LE ⊂ E), to be the set of legal

Self-stabilization of Byzantine Protocols 55

executions of P (denoted LE(P) respectively). The legal global states and the set
of legal executions are determined by the particular task in the specific system
and its respective normal executions. This cannot be characterized in general
terms regardless of the actual problem definition that program P seeks to solve.

The self-stabilization of a system is informally defined by the requirement
that every execution in E has a non-empty suffix in LE. We adopt the definitions
of a self-stabilizing extension of a non-stabilizing program from [15]:

Definition 9. A projection of a global state onto a subset of the variables and
the messages on the channels is the value of the state for those variables and
messages.

Definition 10. Program Q is an extension of program P if for each global
state in NE(Q) there is a projection onto all variables and messages of P such
that the resulting set of sequences is identical to NE(P), up to stuttering5.

Note that when one considers only those portions of Q’s global state that
correspond to P’s variables and messages and if repetitions of states are ignored,
then the legal executions of P and Q are identical. Thus, a state of Q is a legal
state of Q iff the projection onto P is a legal state of P. The program P to be
extended is called the basic program.

Definition 11. Program Q is a self-stabilizing extension of a program P if
Q is an extension of P and any execution in E(Q) has a non-empty suffix whose
projection onto P is in LE(P).

Thus, informally, if Q is a self-stabilizing extension of P then the projection
of Q onto P is self-stabilizing. Therefore we refer to Q as a stabilizer of P.

4 A Byzantine Stabilizer

Intuitively, the task of stabilizing a program should supposedly be rather
straightforward: Every period of time, make all nodes report their internal states,
then sift through the collected states and search for a possibly global inconsis-
tency in the algorithm as emerges from the global snapshot. Upon such an incon-
sistency make all nodes reset to a consistent state. Below we display a conceptual
view of the scheme:

This greatly simplified scheme does not address the many subtle problems
that surface when facing transient faults and permanent Byzantine faults: How
do you synchronize the point in time for reporting the internal states? How do
you ensure that the global snapshot is concurrent enough to be meaningful?
How do you prevent Byzantine nodes from causing correct nodes to see differing
global snapshots? How does the predicate detection mask Byzantine values?

We address the synchronization issue by employing an underlying Byzantine
self-stabilizing pulse synchronization procedure. The pulse is essentially used as
5 When comparing sequences, adjacent identical states are eliminated; this is called

the elimination of stuttering in [15].

56 A. Daliot and D. Dolev

At “time − to − exchange − states” do
1. Send local state to all nodes and Byzantine Agree on every node’s state;
2. All correct nodes now see the same global snapshot;
3. Check if global snapshot represents a legal state;
4. If not then reset the basic program;
5. If yes but your state is corrupt then repair state;

the event that helps to determine when to report the local state. The “mean-
ingfulness” of the global snapshot is addressed by the observation that many
algorithms have identifiable events in their executions. In a semi-synchronous
protocol different nodes should execute the same events within a small bounded
time of each other. If all correct nodes report their local states and clock time6

at such an event (denoted sampling point) then the combination of clock time
and the emergent global snapshot can be used for deducing whether the protocol
is in a legal state. As an example, consider that the events are the beginning of a
round, in case the basic program works in rounds. Thus all correct nodes should,
whenever the system is in a legal state, reach the event of a specific round within
bounded clock time of each other. By instructing the nodes to report their state
(round number) and clock time at the specific round, it can be deduced whether
this event indeed happened within the legal bounded time. If so, then that im-
plies that the global snapshot taken carries meaningful information about the
global state of the system. By evaluating this global predicate a decision can be
made as of the legality of the global state and a reset can be done, if required.
If the reported clock times are “too far” from each other then this is a sufficient
indication that the system is not in a legal state and thus should be reset.

The issue of Byzantine nodes and values are tackled by initiating Byzan-
tine agreement on the reported states. This ensures that all correct nodes have
identical views of the global snapshot.

Our scheme stabilizes any Byzantine protocol that has such events (sampling
points) during the execution, which can be identified by checking the program
counter and local state. Otherwise, it is required that the basic program signals
when to read and report the local state. We argue that this definition covers an
extensive set of protocols. Programs that work in round structure is just a specific
and easily identifiable example of such protocols. We assume for simplicity that
the sampling points are taken at least 4σ apart on the same node in order to be
able to differentiate between adjacent sampling points due to the synchronization
uncertainties. It remains open whether this bound is really required. In Section 5
we give a detailed example of how to extend a specific clock synchronization
algorithm that does not operate in a round structure.

Note that we do not aim at achieving a consistent global snapshot in the
Chandy-Lamport sense (see [5]), which is not clearly defined in the Byzantine
fault model. For our purposes a projection of the local state to the application

6 Note that the clock time can be the elapsed time on a node’s timer since the pulse.
The synchronization of the pulses implies synchronization of these clocks.

Self-stabilization of Byzantine Protocols 57

state suffices in order to detect states that violate the assumptions of the basic
program on its initial states, which rendered it non-stabilizing in the first place.

Generally, the extension of the basic program is established through a user-
supplied wrapper function, so called because it “wraps” the basic program and
functions as an interface between the basic program and the stabilizer. Note that
the wrapper procedures must be supplied by the implementor. This is because it
is a semantic matter to determine whether the global application state predicate
indicates an illegal state that violates the assumptions of the basic program. For
the sake of modularity and readability the wrapper is divided into two distinct
modules according to its two main functions. The GetState Wrapper()
module interprets the local state of the basic program and returns the local
state at the sampling points. The EvalState Wrapper() module evaluates
the agreed global application snapshot and determines whether it is legal with
respect to the application. It also instructs a node how to repair its local
application state as a function of the global application snapshot, should a
node detect that its local application state is inconsistent with the legal global
application snapshot.

Restrictions on the Basic Program:

R1: The basic program at all correct nodes can be initialize within at least σ
real-time units apart. The procedure Init Basic Program initializes it.

R2: The basic program can tolerate that up to f of the nodes can choose to
keep values from previous incarnations of the basic program (e.g. for replay
of digital signatures).

R3: Has repeated sampling points during execution that can be identified
through the local state. The sampling points are such that if all correct
nodes report their state at the same corresponding sampling point then
the global application snapshot is “meaningful” with respect to the appli-
cation.

R4: During a legal execution all the correct nodes’ sampling points are within Δ
real-time units of each other. The background pulse algorithm implies that
Δ ≥ σ, because the pulse skew may cause the nodes to reach the sampling
points up to σ real-time units of each other.

R5: There exists a value Σ, such that in every time-window that is at least
some Σ real-time units long every correct node has at least one sampling
point. This value also covers the initialization period of the basic program.

R6: The set of legal application states of the basic program can be determined
by evaluating a predicate on the application state variables. An additional
requirement is that if up to f non-faulty nodes detect that their own local
state is inconsistent with a legal global application snapshot then it can be
repaired without needing a global reset7.

R7: The basic program has a closure property with regards to the legal global
states. I.e. if the system is in a legal state and the system is coherent then
it stays in a legal state as long as the system stays coherent.

7 A basic program that lacks this property might not converge to a legal state.

58 A. Daliot and D. Dolev

To formalize the intuition we give a more refined presentation of the algorithm:

At “pulse” event Do /* received the internal pulse event */
1. Revoke possible other instances of the algorithm and clear the data structures;
2. If (reset) then Do invoke Init Basic Program; /* reset the Basic Program */

/* Lines 3,4 are executed by the GetState Wrapper() procedure */
3. Upon a sampling point Do
4. Set Timer := elapsed time since pulse;
5. Record app state & invoke Byz Agreement on (app state, Timer);

/* Line 6 is executed about agreement duration time after the f+1st agreement */
6. Sift through agreed values for a cluster of ≥ n − f values whose Timers within

2Δ of each other, thus comprising a meaningful global application snapshot;
7. If no such cluster exists then Do reset := true;

/* Lines 8,9,10 are executed by the EvalState Wrapper() procedure */
8. Else Do predicate evaluation on the global application snapshot;
9. If global application snapshot is not legal Do reset :=true;

10. Else If you are not part of the cluster Do Repair your application state;

The complete algorithm, denoted ByzStabilizer, is given below:

Algorithm 1. ByzStabilizer /* executed at node q */
At “pulse” event Do /* received the internal pulse event */
Begin
1. Revoke possible other instances of ByzStabilizer and clear the data structures;
2. Timer := 0; Tpivot := 0;
3. If (reset) then Do invoke Init Basic Program; /* reset the Basic Program */
4. Wait until Timer = σ · (1 + ρ) time units;

/* read&agree state at sampl. point; collect f+1 agreed states in window */
5. Do
6. Invoke in the background RecState := GetState Wrapper();
7. If RecState
=⊥ then Do invoke Byz Agreement(q, RecState, T imer);
8. AS := {(p, S, T) | Byz Agreement returned S
=⊥}; /* add agreed state */
9. Agr nodes := {pi | (pi, , Ti) ∈ AS, σ + Δ ≤ Ti ≤ Σ + Δ}; /* minimal Ti */

10. Until (‖ Agr nodes ‖≥ f + 1 or Timer > Σ + Δ + agreement duration);

/* collect agreed states, until no more possible states from correct nodes */
11. Do
12. AS := {(p, S, T) | Byz Agreement returned S
=⊥}; /* add agreed state */
13. Agr nodes := {pi | (pi, , Ti) ∈ AS, σ + Δ ≤ Ti ≤ Σ + Δ}; /* minimal Ti */
14. Let pivot be the f+1st node in Agr nodes, in ascending order by their min. Ti;
15. Until Timer ≥ Tpivot + (σ + Δ + agreement duration) · (1 + ρ) time units;

Self-stabilization of Byzantine Protocols 59

/* seek cluster of ≥n−f values whose Timers within 2Δ of each other */
16. AS′ := {(p, S, T) ∈ AS | σ + Δ ≤ T ≤ Tpivot + Δ · (1 + ρ)};
17. Cluster rep := {(pc, Sc, Tc) ∈ AS′ |

‖ {p′ | (p′, S′, T ′) ∈ AS & Tc ≤ T ′ ≤ Tc + 2Δ & Sc ∼ S′} ‖≥ n − f};

/* if no cluster do reset, otherwise evaluate snapshot of earliest cluster */
18. If ‖ Cluster rep ‖ = 0 then Do reset := true; /* if no n-f sized cluster found */
19. Else Do (pc, Sc, Tc):=minT {(p, S, T) ∈ Cluster rep};/* else seek earliest cluster */
20. globAppSnapshot := {(p′, S ′, T ′) ∈ AS | Tc ≤ T ′ ≤ Tc + 2Δ & Sc ∼ S ′};
21. reset := EvalState Wrapper(globAppSnapshot); /*reset,repair or nothing*/
End

The internal pulse event is delivered by the pulse synchronization proce-
dure (presented in [9]). The synchronization of the pulses ensures that the
ByzStabilizer procedure is invoked within σ real-time units of its invocation
at all other correct nodes. Note that we do not assume any correlation between
the pulse cycle and any internal cycles or rounds of the basic program. Hence at
the time of the pulse, the basic program may be in any of its states. The Byzan-
tine agreement procedure used, Byz Agreement, is essentially the consensus
procedure of [6]. We present its agreement equivalent in Appendix.

Line 1: Following the pulse any possible on-going invocation of
ByzStabilizer (and thus any on-going Byz Agreement or instance of the
wrappers, but not the execution of the basic program) is revoked and all data
structures that are not used by the basic program are cleared. The exception
is the “reset” variable that is not cleared. Note that the application state, as it
belongs to the basic program, remains intact.

Line 2-3: Each node p initializes a Timer that holds the elapsed clock time
since the last pulse invocation, before possibly doing a reset of the basic program.

Lines 4-7: When the GetState Wrapper() wrapper procedure encoun-
ters a sampling point subsequent to the pulse, at elapsed time = Timer, then it
records the local application state into the RecState variable. Agreement is then
invoked on (p, RecState, T imer). The procedure GetState Wrapper() san-
ity checks the state recorded at line 6, thus if it detects that the local application
state is invalid or corrupt it will return ⊥.

Lines 8-15: Target at identifying the f + 1st (time-wise) distinct node whose
value has been agreed upon, denoted the pivot node. Note that after a bounded
time all correct nodes will identify the same pivot node. The time appearing in
the agreed value of the pivot node is denoted Tpivot. The variable AS holds the
set of agreed states. The variable Agr nodes holds the set of nodes whose values
have been agreed on.

Lines 16-17: A bounded period of time subsequent to Tpivot, all correct nodes
must have terminated agreement on all nodes’ values. It is then, that a cluster
of at least n− f agreed values is searched for, such that their Timers are within
2Δ of each other.

Line 18: Such a cluster, if exists, comprises a meaningful global application
snapshot. Otherwise, the global application state must be in an illegal state.

60 A. Daliot and D. Dolev

Lines 19-21: If a cluster is detected, then the EvalState Wrapper proce-
dure evaluates the global application snapshot. It determines whether the node
must repair its local application state; whether a global reset should be scheduled
at the next pulse invocation or whether the global application state is assumed
to be legal and thus nothing is done. The ∼ notation denotes equality between
cluster identifiers.

The following Lemma and Theorem apply as long as the system is coherent:

Lemma 1. If the system is in an arbitrary global state then, within finite time,
subsequent to line 17 of the ByzStabilizer algorithm there is agreement on the
set Cluster rep.

Theorem 1. ByzStabilizer is a self-stabilizing extension of any algorithm
that complies with restrictions R1-R7.

Proof. Convergence: Let the system be coherent but in an arbitrary global
state, s, with the nodes holding arbitrary local application states. The pulse syn-
chronization procedure is self-stabilizing, thus, independent of the system’s ini-
tial state within a finite time the pulses are invoked regularly and synchronously
with a tightness of σ real-time units. At the pulse invocation all remnants
of previously invoked ByzStabilizer, inclusive of its sub-procedures such as
the agreement and wrappers, are flushed by all the correct nodes. Following
Lemma 1, subsequent to line 17 of ByzStabilizer there is consensus on the
selected cluster (including of the empty cluster). At line 18 there may be one of
two possibilities:

1. ‖ Cluster rep ‖ = 0: This necessarily implies the basic program is in an
illegal state. In this case all correct nodes will do reset :=true. At the next
pulse all correct nodes will reset the basic program and thus converge to a
legal state.

2. A cluster was detected : In this case subsequent to line 20 the variable
globAppSnapshot, which holds the cluster whose states are the earliest
agreed on since the pulse, will be generated at all correct nodes. Again,
there are two cases to consider:
(a) The sampling points are within Δ real-time of each other :

Thus all correct nodes have initiated an agreement on their state within
Δ real-time units of time Tpivot at the pivot node. Hence all correct nodes
are represented in the cluster. The reset variable will be set at line 21 by
the EvalState Wrapper predicate detection procedure. If the proce-
dure returns that the globAppSnapshot is legal then all correct nodes do
nothing. Otherwise all correct nodes will reset the basic program at the
next pulse and thus the system converges to a legal global state.

(b) The sampling points are not within Δ real-time of each other : There are
two cases to consider:
i. All correct nodes are represented in the cluster :

Thus the basic program is unsynchronized within the uncertainty
window. If the EvalState Wrapper procedure detects the illegal-
ity of the global state then all correct nodes will reset at next pulse,

Self-stabilization of Byzantine Protocols 61

otherwise the illegality will not be detected and all correct nodes will
not reset the basic program at the next pulse.

ii. At least one correct nodes is not represented in the cluster : Again
there are two cases:
A. The EvalState Wrapper procedure evaluates in line 21 the

application snapshot as illegal : Then all correct nodes reset at
the next pulse and the system attains a legal global state.

B. The EvalState Wrapper procedure evaluates in line 21 the
application snapshot as legal : This is due to faulty nodes that
“fill-in” for the lacking correct values, then these correct nodes
that are not represented will detect so and must repair their local
states. Thus no correct node does a reset at the next pulse. By
restriction R6, a repair is done by the EvalState Wrapper
procedure as a function of the global application snapshot such
that the new global state will be legal. ��

Closure: Following Lemma 1 the closure proof reduces to case (2.a.) in the proof
of convergence, for the case in which the global state is legal. Thus, following
restriction R4 the EvalState Wrapper procedure evaluates correctly that the
global snapshot is legal and thus all correct nodes do reset :=false.

This concludes the proof of the theorem. ��

5 Example of Stabilizing a Non-stabilizing Algorithm

To illustrate our method and to elucidate its generality we will provide a spe-
cific example of the conversion of a well known non-stabilizing algorithms to its
stabilizing counterpart.

To stabilize the protocol using our scheme the following needs to be identified:
the application state, the sampling points, the bound Δ on the real-time skew be-
tween correct nodes’ sampling points in a legal state, the GetState Wrapper
procedure, the EvalState Wrapper procedure and how it characterizes the
legal states and how it does a repair, the initialization of the basic program
following a global reset, the required minimal length of the cycle.

Consider the Byzantine clock synchronization algorithm in [10]. Informally
that algorithm operates as follows: The processes resynchronize their clocks every
PER time period. A process expects the time at the next resynchronization to
equal ET . When a process’s local time reaches ET it broadcasts a (signed)
message stating “the time is ET”. Alternatively, when a process receives such
a message from f + 1 distinct nodes it knows that at least one correct node
advanced its local time to ET and thus it resets its clock to ET . Note that this
algorithm does not utilize a rounds structure.

It is interesting to note that the candidate protocol above uses signed mes-
sages in a way that does not comply with R2, because replay of signed messages
from previous incarnations of the protocol can destroy the synchronization of the
clocks of the correct nodes. One can transform the protocol to conform with R2,

62 A. Daliot and D. Dolev

by using Byzantine Agreement instead of sending signed messages. The difficulty
above is inherent in stabilizing protocols that use digital signatures.

– The application state will be comprised of the ET variable only.
– Practically any point throughout the inter-PER period avoiding the vicinity

of the resynchronization events is safe for sampling. For illustrative purposes
we will define a sampling point at every time that equals ET + PER/2. It is
clear that the ET variable is quiescent around this point when the algorithm
is in a legal global state.

– The algorithm can be initialized with the required bound of σ real-time
units between the different nodes. This will not affect the precision of the
algorithm which will stay d. That will yield a real-time skew between correct
nodes’ sampling points in a legal state of Δ = d + PER · (1 + ρ).

– The sampling point is identified by the GetState Wrapper procedure
through the local state event of clocktime = ET +PER/2, at which the ET
value is read into the localAppState variable.

– The EvalState Wrapper procedure identifies the legal application states
as those in which there are at least n − f identical ET values. A repair is
done by a node by setting its ET value to equal the other n− f or more ET
values in the application snapshot if it was evaluated as legal.

– Following a reset a node should initialize the algorithm by setting its ET
variable to some pre-defined value, e.g. ET = 0. As mentioned before, the
initial skew of σ will affect the accuracy but not the precision, as early and
fast nodes will reach their subsequent ET before the others, but the others
late and slow nodes will set their clock accordingly upon receiving f + 1
messages which is uncorrelated to the initialization skew.

– The required minimal cycle length equals PER/2 in case the pulse correlates
with the reading of the sampling point and some correct nodes will have to
wait until the next sampling point. The protocol then needs to allow for a full
Byzantine agreement to terminate, in addition to a few round-trip rounds.
Thus the required minimal cycle length equals PER/2 + (2f + 3) rounds.

6 Analysis

We require Cycle to be chosen s.t. cyclemin > σ + Σ + agreement duration.
From an arbitrary state in which the system is coherent it can take up to

pulse conv real-time until the pulses synchronize. Subsequent to the pulses it
can take in the order of Σ + agreement duratione real-time to reach a decision
on a reset. The steady-state time complexity equals the time overhead from the
pulse until the EvalState Wrapper procedure terminates. Again this equals
about Σ + agreement duration time. With few faults and/or a fast network this
becomes in the order of Σ, which is largely determined by the user and can be as
low as 4d if the basic program allows for frequent sampling points. The message
complexity is expressed in point-to-point messages. The message complexity of

Self-stabilization of Byzantine Protocols 63

the steady state is roughly n2 messages for the pulse synchronization procedure,
and f ′ · n2 for the agreement algorithm.

Note that the agreement instances initiated by correct nodes will always
terminate within 2 communication rounds, this is due to the early stopping
property of the consensus algorithm which terminates within 2 rounds if all
correct nodes hold the same initial agreement value. Thus the communication
complexity is that of the actual number of faulty nodes.

The algorithm is fault-containing, in the sense that if faulty nodes behave
“correctly” such that a correct node detects that it is not in synch with a legal
global snapshot then the node can “repair” itself. Thus even though we present a
reset-based protocol, repair is done up to a certain amount of concurrent faults.
This is because our protocol is Byzantine resilient, thus a non-Byzantine fault
or inconsistency will be masked by the protocol while the affected non-faulty
node can perform a repair. Only if there should be more than f faults and
inconsistencies would a system reset be performed.

The algorithm is also time-adaptive, the number of rounds executed in every
cycle equals the number of actual faults, f ′. This is due to the early-stopping
feature of the agreement algorithm which terminates within f ′ ≤ f rounds.

Note that if solving a certain Byzantine problem can be reduced to consensus
(or agreement) on the future value of the global state at the next pulse, (e.g.
token circulation, see [6]), as opposed to reaching agreement on the current
value of every node, then the agreement algorithm presented can be used to
achieve 2-round early stopping subsequent to every pulse. Thus based on the
global application snapshot at the last pulse, it can be calculated what the
global state should be at this pulse. Thus if all correct nodes previously agreed
on the state of every other node, which comprises the global snapshot, then
they can enter agreement with consensus on the expected states for all nodes.
The early stopping feature of the consensus algorithm in [6] ensures that if
all correct nodes hold the same initial value to be agreed on then consensus
is reached within two rounds. This makes the steady-state case extremely
cost-efficient with a minimal overhead of 2 rounds. Only following a transient
failure might full agreement be executed on the values of the faulty nodes, since
different correct nodes may then hold different values for the same nodes.

Acknowledgements: We wish to thank Shlomi Dolev and Hanna Parnas for
stimulating discussions with regards to the current result.

References

1. Y. Afek, S. Dolev, “Local Stabilizer”, Proc. of the 5th Israeli Symposium on Theory
of Computing Systems (ISTCS97), Bar-Ilan, Israel,74-84. June 1997.

2. A. Arora and S. Kulkarni, “Component Based Design of Multitolerance, IEEE
Transactions on Software Engineering, Vol. 24, No.1, January 1998, pp. 63-78.

3. A. Arora and M. Gouda, “Distributed Reset, In Proceedings of the 10th Conference
on Foundations of Software Technology and Theoretical Computer Science, number
472 in Lecture Notes in Computer Science, pages 316–333, 1990.

64 A. Daliot and D. Dolev

4. B. Awerbuch, B. Patt-Shamir and G. Varghese, “Self-Stabilization by Local Check-
ing and Correction, In Proceedings of the 32nd IEEE Symp. on Foundation of
Computer Science, 1991.

5. K. M. Chandy and L. Lamport, “Distributed Snapshots: Determining Global States
of Distributed Systems, ACM Trans. on Computer Systems, Vol. 9(1):63–75, 1985.

6. A. Daliot, and D. Dolev, “Self-Stabilizing Byzantine Token Circulation”, Technical
Report TR2005-77, Schools of Engineering and Computer Science, The Hebrew
University of Jerusalem, June 2005. Url: http://leibniz.cs.huji.ac.il/tr/834.pdf

7. A. Daliot, D. Dolev and H. Parnas, “Self-Stabilizing Pulse Synchronization Inspired
by Biological Pacemaker Networks”, In Proceedings of the Sixth Symposium on
Self-Stabilizing Systems, DSN SSS ’03, San Francisco, June 2003. See also LNCS
2704.

8. A. Daliot, D. Dolev and H. Parnas, “Linear Time Byzantine Self-Stabilizing Clock
Synchronization”, In Proceedings of 7th International Conference on Principles of
Distributed Systems (OPODIS-2003), La Martinique, France, December, 2003.

9. A. Daliot, D. Dolev and H. Parnas, “Self-Stabilizing Byzantine Pulse Syn-
chronization”, Technical Report TR2005-84, Schools of Engineering and
Computer Science, The Hebrew University of Jerusalem, Aug. 2005. Url:
http://leibniz.cs.huji.ac.il/tr/841.pdf

10. D. Dolev, J. Y. Halpern, B. Simons, and R. Strong, “Dynamic Fault-Tolerant Clock
Synchronization”, Journal of the ACM, Vol. 42, No.1, pp. 143-185, 1995.

11. S. Dolev, “Self-Stabilization”, The MIT Press, 2000.
12. S. Dolev, and J. L. Welch, “Self-Stabilizing Clock Synchronization in the presence

of Byzantine faults”, Journal of the ACM, Vol. 51, Issue 5, pp. 780 - 799, 2004.
13. M. J. Fischer, N. A. Lynch and M. Merritt, “Easy impossibility proofs for distributed

consensus problems”, Distributed Computing, Vol. 1, pp. 26-39, 1986.
14. A. S. Gopal and K. J. Perry, “Unifying self-stabilization and fault-tolerance”, IEEE

Proceedings of the 12th annual ACM symposium on Principles of distributed com-
puting, Ithaca, New York, 1993.

15. S. Katz, K. J. Perry, “Self-Stabilizing Extensions for Message-Passing Systems”,
Distributed Computing 7(1): 17-26 (1993)

16. S. Kulkarni and A. Arora, “Multitolerance in distributed reset, Chicago Journal of
Theoretical Computer Science, Special Issue on Self-Stabilization, 1998.

17. S. Kulkarni and A. Arora, “Compositional Design of Multitolerant Repetitive
Byzantine Agreement, Proceedings of the 18th Int. Conference on the Foundations
of Software Technology and Theoretical Computer Science, India, 1997.

18. S. Kutten and B. Patt-Shamir, “Time-adaptive self stabilization, In PODC97 Pro-
ceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed
Computing, pages 149-158, 1997.

19. J. Lundelius, and N. Lynch, “An Upper and Lower Bound for Clock Synchroniza-
tion,” Information and Control, Vol. 62, pp. 190-205, Aug/Sep. 1984.

20. M. Nesterenko and A. Arora, “Local Tolerance to Unbounded Byzantine Faults”,
IEEE SRDS, pages 22-31, 2002.

21. S. D. Stoller, “Detecting Global Predicates in Distributed Systems with Clocks”,
Distributed Computing, 13(2):85-98, April 2000.

22. Sam Toueg, Kenneth J. Perry, T. K. Srikanth, “Fast Distributed Agreement”, SIAM
Journal on Computing, 16(3):445-457, June 1987.

Self-stabilization of Byzantine Protocols 65

Appendix - The Byz Agreement Procedure

The Byzantine Agreement module extends the approach taken in [6] in using
explicit time bounds in order to address the variety of potential problems that
may arise when the system is stabilizing.

We assume that timers of correct nodes are always within σ̄ of each other.
More specifically, we assume that nodes have timers that reset periodically, say
at intervals ≤ Cycle′. Let Tp(t) be the reading of the timer at node p at real-time
t. We thus assume that there exists a bound such that for every real-time t, when
the system is coherent,

∀p, q if σ̄ < Tp(t), Tq(t) < Cycle′ − σ̄ then |Tp(t) − Tq(t)| < σ̄ .

The bound σ̄ includes all drift factors that may occur among the timers of
correct nodes during that period. When the timers are reset to zero it might
be, that for a short period of time, the timers may be further apart. The pulse
synchronization algorithm [9] satisfies the above assumptions and implies that
σ̄ > d.

We use the following notations in the description of the agreement procedure:

– Let d̄ be the duration of time equal to (σ̄+d) · (1+ρ) time units on a correct
node’s timer. Intuitively, d̄ can be assumed to be a duration of a “phase” on
a correct node’s timer.

– The consensus-broadcast and the broadcast primitives are defined in [6]. Note
that an accept is issued within the broadcast primitive.

The Byz Agreement algorithm is presented in a somewhat different style.
Each step has a condition attached to it, if the condition holds and the timer
value assumption holds, then the step is to be executed. Notice that only the
step needs to take place at a specific timer value. It is assumed that the internal
procedures invoked as a result of the Byz Agreement procedure are implicitly
associated with the agreement procedure.

The Byz Agreement algorithm satisfies the following typical properties:

Termination: The protocol terminates in a finite time;
Agreement: The protocol returns the same value at all correct nodes;
Validity: If the initiator is correct, then the protocol returns the intiator’s value;

Nodes stop participating in the Byz Agreement protocol when they are
instructed to do so. They stop participating in the broadcast primitive 2d̄ after
they terminate Byz Agreement.

Definition 12. We say:

A node returns a value m if it has stopped and returned value = m.
A node p decides if it stops at that timer time and returns a value �=⊥ .
A node p aborts if it stops and returns ⊥ .

66 A. Daliot and D. Dolev

Algorithm Byz Agreement on (p, V al, T) /* invoked at node q */

broadcasters := ∅; value :=⊥;
if p = q then send (initialize, q, V al, T + d̄, 1) to all; /* the General */
by time (T + d̄) :

if received (initialize, p, V al, T + d̄, 1) then
consensus-broadcast(p, V al, T + d̄, 1);

by time (T + 3d̄) :
if accepted (p, v, T + d̄, 1) then

value := v;
by time (T + (2f + 3)d̄) :

if value
=⊥ then

broadcast (q, value, T + d̄, �Tq−T−d̄

2d̄
� + 1);

stop and return value.
at time (T + (2r + 1)d̄) :

if (|broadcasters| < r − 1) then
stop and return value.

by time (T + (2r + 1)d̄) :
if accepted (p, v′, T + d̄, 1) and r − 1 distinct messages (pi, v

′, T + d̄, i)
where ∀i, j 2 ≤ i ≤ r, and pi
= pj
= p then

value := v′;

Fig. 1. The Byz Agreement algorithm

Theorem 2. The Byz Agreement satisfies the Termination property. When
n > 3f , it also satisfies the Agreement and Validity properties.

Proof. The proof follows very closely to the proof of the Byz-Consensus algo-
rithm in [6]. Notice, that there is a difference of one d̄ resulting from the initiation
of the protocol by a specific node, followed by a consensus. Another difference is
that the General itself is one of the nodes, so if it is faulty there are only f − 1
potential faults left.

Lemma 2. If a correct node aborts at time T + (2r + 1)d̄ on its timer, then no
correct node decides at a time T + (2r + 1)′d̄ ≥ T + (2r + 1)d̄ on its timer.

Lemma 3. If a correct node decides by time T + (2r + 1)d̄ on its timer, then
every correct node decides by time T + (2r + 3)d̄ on its timer.

Termination: Lemma 3 implies that if any correct node decides, all decide
and stop. Assume that no correct node decides. In this case, no correct node
ever invokes a broadcast (p, v, T + d̄,). By the consensus-broadcast properties
in [6], no correct node will ever be considered as broadcaster. Therefore, by time
T +(2f +3)d̄ on their timers, all correct nodes will have at most f broadcasters
and will abort and stop. ��

Agreement: If no correct node decides, then all abort, and return to the same
value. Otherwise, let q be the first correct node to decide. Therefore, no correct
node aborts. The value returned by q is the value v of the accepted (p, v, T + d̄, 1)
message. By the consensus-broadcast properties in [6], all correct nodes accept

Self-stabilization of Byzantine Protocols 67

(p, v, T + d̄, 1) and no correct node accepts (p, v′, T + d̄, 1) for v �= v′. Thus all
correct nodes return the same value. ��
Validity: If the initiator q is correct, all the correct nodes invoke the consensus-
broadcast with the same value v′ and invoke the protocol with the same timer
time (T + d̄). By the consensus-broadcast properties in [6], all correct nodes will
stop and return v′. ��

Thus the proof of the theorem is concluded. ��

Self-stabilization with r-Operators Revisited

Sylvie Delaët1, Bertrand Ducourthial2, and Sébastien Tixeuil3

1 LRI – CNRS UMR 8623, Université Paris Sud, France
2 Heudiasyc – UMR CNRS 6599, UTC, Compiègne, France

3 LRI – CNRS & INRIA Grand Large, Université Paris Sud, France

Abstract. We present a generic distributed algorithm for solving silents
tasks such as shortest path calculus, depth-first-search tree construction,
best reliable transmitters, in directed networks where communication
may be only unidirectional. Our solution is written for the asynchronous
message passing communication model, and tolerates multiple kinds of
failures (transient and intermittent).

First, our algorithm is self-stabilizing, so that it recovers correct be-
havior after finite time starting from an arbitrary global state caused
by a transient fault. Second, it tolerates fair message loss, finite mes-
sage duplication, and arbitrary message reordering, during both the sta-
bilizing phase and the stabilized phase. This second property is most
interesting since, in the context of unidirectional networks, there exists
no self-stabilizing reliable data-link protocol. The correctness proof sub-
sumes previous proofs for solutions in the simpler reliable shared memory
communication model.

1 Introduction

Historically, research in self-stabilization over general networks has mostly covered
undirected networks where bidirectional communication is feasible and carried out
using shared registers (see [7]). This model permits algorithm designers to write
elegant algorithms and proofs. To actually implement such self-stabilizing algo-
rithms in real systems, where processors communicate by exchanging messages,
transformers that preserve the self-stabilizing property of the original algorithm
are needed. Such transformers are presented in [2,7], and are based on variants of
the alternating bit protocol or the sliding window protocol. A common drawback
to these transformers is that they require the receiver of a message to be able to
send acknowledgments to the emitter periodically, so that the underlying message
passing networkmust be bidirectional for the transformer to be correct.Also, those
transformers still make the assumption that processors are aware of their neighbor-
ing processors (i.e. they know the identities of all of their neighbors).

Hence, in directed networks, acknowledgment-based transformers cannot be
used to run self-stabilizing algorithms in message passing networks, since it is pos-
sible that there exist two neighbors in the network that are only connected through
a unidirectional link. Moreover, in directed message passing networks, it is gener-
ally easy to maintain the set of input neighbors (by checking who has ”recently”

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 68–80, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Self-stabilization with r-Operators Revisited 69

sent a message), but it is very difficult (if not impossible) to maintain the set of
output neighbors. For instance, in a satellite or a sensor network, a transmitter is
generally not aware of who is listening to the information it communicates. Note
also that wireless networks can be directed message passing networks, especially
when power of emissions are not uniform: a node i can receive a message from j
while the converse is not possible.

So, self-stabilizing algorithms that use implicit neighborhood knowledge to
compare one node state with those of its neighbors and to check for consistency –
a large subset of self-stabilizing algorithms – cannot be used in directed networks.

The particular system hypothesis and the lack of transformers has led authors
to design specific self-stabilizing algorithms for directed networks [1,4,11,6,12,9].
The two solutions of [11,12] are generic (they can solve multiple problem instances
with a single parameterized algorithm), but perform in the unidirectional shared
memory model. In [12], the atomicity of communication is composite: in one atomic
step, a processor is able to read the actual state of all of its neighbors and update
its state, while in [11], the atomicity is read-write: in one atomic step, a processor
is able to read the state of one neighbor, or update its state, but not both. Both
approaches cannot be transformed to perform in unidirectional message passing
networks using known self-stabilizing transformers (see above). The two solutions
of [4,6,9] are specific (a single problem is addressed, the routing problem in [4], the
census problem in [6], and the group communication problem in [9]), but perform
in directed message passing networks. While [4,9] assume reliable communications
(links do not lose, duplicate or reorder messages), [6] tolerates message loss, dupli-
cation, and reordering. [1] proposes a generic solution in themessagepassingmodel,
but assumes that communications are reliable (with FIFO links), that nodes have
unique identifiers, and that the network is strongly connected, three hypothesis
that we do not make.

Our Contribution. In this paper, we concentrate on providing a generic algorithm
(that can be instantiated to solve silent tasks, see [8]), that performs on general
directed message passing networks. Our solution is not only self-stabilizing (it re-
covers in finite time from any initial global state), it also tolerates fair message loss,
finite duplication, and arbitrary reordering both in the stabilizing and in the sta-
bilized phase. Nice properties of our approach are that the network need not be
strongly connected, and nodes need not know whether the network contains cycles,
and no upper bound on the network size, diameter, or maximum degree. However,
if such information is known, the stabilization time can be significantly reduced.

Weprovide, inmore details, a parameterized algorithmthat canbe instantiated
with a local function.Our parameterized algorithmenables a set of silent tasks tobe
solved self-stabilizingly, provided that these tasks can be expressed through local
calculus operations called r-operators that operate over a set S. The r-operators
are general enough to permit applications such as shortest path calculus anddepth-
first-search tree construction on arbitrary graphs while remaining self-stabilizing.

The main differences between this paper and the most closely related work [11]
are twofold. First, we consider an unreliable message passing communication net-
work, instead of a reliable shared memory system. As noted above, unidirectional

70 S. Delaët, B. Ducourthial, and S. Tixeuil

Reference Overhead Atomicity Reliability Algorithm
[1] yes send/receive atomicity reliable generic (total order)
[4] yes send/receive atomicity reliable specific (routing)
[6] yes send/receive atomicity unreliable specific (census)
[9] yes send/receive atomicity reliable specific (group communication)
[12] no composite atomicity reliable generic (partial order on S)
[11] no read/write atomicity reliable generic (total order on S)

This paper no send/receive atomicity unreliable generic (total order on S)

Fig. 1. A summary of related self-stabilizing algorithms in directed networks

read-write systems cannot be emulated in message passing networks by means of a
known self-stabilizing transformer. The key difference is that shared registers may
hold only the latest written value, while the communications links we consider may
hold an unbounded number of (possibly erroneous)messages that can appear again
once the network appears to have stabilized (due to the reordering assumption).
Second, the proof technique that we use here is based on a completely different idea
than that of [11]. In [11], it is first proved that a terminal configuration is eventu-
ally reached starting from any initial configuration, and then (using a complicated
induction argument) that this terminal configuration is in fact legitimate. In con-
trast, in message passing networks, self-stabilizing systems cannot be terminating
(otherwise deadlock situations could occur, see [13]), so the proof argument here is
to prove the following two invariants: (i) the state of each processor is eventually
lower than (or equal to) its legitimate state (in the sense of the order defined on
S), and (ii) the state of each processor is eventually greater than (or equal to) its
legitimate state, so that the state of each processor is eventually legitimate. Not
only is this new proof simpler and more elegant than that of [11], it also permits
algorithm designers to abstract the communication media that is used, so that the
same proof applies for shared memory and unreliable message passing systems.

In Figure 1, we capture the key differences between our protocol and the afore-
mentioned related solutions ([1,4,11,6,12]) in general directed networks regarding
the following criteria: communication, overhead, atomicity, reliability, and algo-
rithm nature.

Outline. Section 2 presents a model for distributed systems we consider. Sec-
tion 3 describes our self-stabilizing parameterized algorithm for general directed
networks, along with our system hypothesis and the sketch of the proof of correct-
ness (see [5] for complete proofs). Concluding remarks are proposed in Section 4.

2 Model

Processors and Links. Processors use unidirectional communication links to
transmit messages from an origin processor o to a destination processor d. The
link is interacting with one input port of d and one output port of o. A link may
hold an arbitrary number of messages (although our algorithm also works for
bounded capacity links). Depending upon the way messages are handled by a

Self-stabilization with r-Operators Revisited 71

communication link, several properties can be defined on a link. A complete for-
malization of these properties is proposed in [14]. We only enumerate those that
are related to our algorithm. There is a fair loss when, infinitely many messages
being emitted by o, infinitely many messages are received by d. There is finite
duplication when every message emitted by o may be received by d a finite (yet
unbounded) number of times. There is reordering when messages emitted by o
may be received by d in a different order than that they were emitted. There is
eventual delivery if any message that is not lost is eventually received (i.e. no
message remains forever in a communication link).

Distributed System. A distributed system is a 2-tuple S = (P ,L) where P is
the set of processors and L is the set of communication links. Such a system is
modeled by a directed graph (also called digraph) G = (V, E), defined by a set
of vertices V and a set E of edges (v1, v2), which are ordered pairs of vertices of
V (v1, v2 ∈ V). Each vertex u in V represents a processor Pu of system S. Each
edge (u, v) in E represents a communication link from Pu to Pv in S. In the
remainder of the paper, we use interchangeably processors, nodes, and vertices
to denote processors, and links and edges to denote communication links.

Graph Notations. The in-degree of a vertex v of G, denoted by δv is equal to
the number of vertices u such that the edge (u, v) is in E. The incoming edges
of each vertex v of G are indexed from 1 to δv. A directed path Pv0,vk

in a
digraph G(V, E) is an ordered list of vertices v0, v1, . . . , vk ∈ V such that, for
any i ∈ {0, . . . , k − 1}, (vi, vi+1) is an edge of E (i.e., (vi, vi+1) ∈ E). The length
of this path is k. If each vi is unique in the path, the path is elementary. The set
of all elementary paths from a vertex u to another vertex v is denoted by Xu,v. A
cycle is a directed path Pv0,vk

where v0 = vk. The distance between two vertices
u, v of a digraph G (denoted by dG(u, v), or by d(u, v) when G is not ambiguous)
is the minimum of the lengths of all directed paths from u to v (assuming there
exists at least one such path). The diameter of a digraph G is the maximum
of the distances between all couples of vertices in G between which a distance
is defined. Finally, we denote as Γ−

v (resp. Γ+
v) the set of predecessors (resp.

successors) of a vertex v ∈ V , that is the set of all vertices u ∈ V such that there
exists a path starting at u (resp. v) and ending at v (resp. u). The predecessors
(resp. successors) u of v verifying dG(u, v) = 1 (resp. dG(v, u) = 1)) are called
direct-predecessors (resp. direct-successors) and their set is denoted Γ−1

v (resp.
Γ+1

v).

Configurations and Executions. The global system state, called a system con-
figuration (or simply configuration) and generally denoted c, is the union of (i)
the states of memories of processors of P and (ii) the contents of communication
links of L. The set of configurations is denoted by C. The part of information in
a configuration c ∈ C related to the processors of P is denoted by c |P ; the part
related to a given processor P ∈ P is denoted by c |P .

Starting from an initial configuration c1, an execution ec1 = c1, a1, c2, a2, . . .
is a maximal alternating sequence of configurations and actions of such that, for

72 S. Delaët, B. Ducourthial, and S. Tixeuil

any positive integer i, the transition from configuration ci to configuration ci+1 is
done through execution of action ai. Maximal means that either the computation
is infinite, or the computation is finite and no action is enabled in the final
configuration. The notations Ec, EC and E denote respectively the set of all
executions starting (i) from the initial configuration c, (ii) from any configuration
c ∈ C ⊂ C, or (iii) from any configuration of C (EC = E). The ordered list
c1, c2, . . . ∈ C of the configurations of an execution e = c1, a1, c2, a2 . . . is denoted
by e |C. In the rest of this paper, we adopt the following convention: if ci ∈ e |C
appears before cj ∈ e |C, then i < j.

Distributed algorithms resolve either static tasks (e.g., distance computation)
or dynamic tasks (e.g., token circulation). The aim of static tasks is to compute a
global result, which means that after a running time, processors always produce
the same output (e.g., the distance from a source). A static task is characterized
by a final processor output oP for any processor P ∈ P , called legitimate output.
A legitimate configuration c for this task satisfies c |P = oP for any processor
P ∈ P . A distributed protocol designed for solving a given static task is correct if
the distributed system S running this protocol reaches in finite time a legitimate
configuration for this task.

Self-stabilization. A set of configurations C ⊂ C is closed if, for any c ∈ C,
any possible execution ec ∈ Ec of system S whose c is initial configuration only
contains configurations in C. A set of configurations C2 ⊂ C is an attractor for a
set of configurations C1 ⊂ C if, any execution ec ∈ EC1 contains a configuration
of C2. Let C ⊂ C be a non-empty set of configurations. A distributed system S
is C-stabilizing if and only if C is a closed attractor for C: any execution e of
E contains a configuration c of C, and any further configurations in e reached
after c remains in C. Finally, consider a static task for the distributed system
S, and let L ⊂ C be the set of the legitimate configurations of S. A distributed
protocol designed for solving this static task is self-stabilizing if the distributed
system S running this protocol is L-stabilizing.

3 Parametric Message Passing PA-MP Algorithm

In this section, we first describe the distributed system we consider before defin-
ing the PA-MP parametrized algorithm. We then introduce the r-operators, that
are used as parameters. These operators are derived from the associative, com-
mutative and idempotent operators (such as the minimum on the integers).

3.1 System

Let S = (P ,L) be the distributed system we consider in the following. The
associated graph composed of processors of P and communications links of L is
fixed, directed and unknown to the processors of P . Communications between
processors are performed by message passing (directed message passing network).

Each processor v of P owns an incoming memory denoted as INv, which
is supposed to be unalterable; this can be implemented by a ROM memory

Self-stabilization with r-Operators Revisited 73

3

5

5

1

Inv =3
u

1

Inv =5
u

4

Inv =5
u

2

Inv =1
u

3

Inv =5

Outv =2 2

5

r-Operator
Minc

Initial value

Output value

Links to direct successors

Node v (wtih degree 4)

Links from direct ancestors

Fig. 2. Layout of a processor using the minc r-operator, defined by minc(x, y) =
min(x, y + 1)

(e.g., EPROM), or a memory that is regularly reloaded by any external process
(human interface, captor, other independent algorithm, etc.). The value of this
memory (that will never change) is called initialization value. For most provided
applications (see [11]), this initialization value is equal to the identity element
of the set S (except for a limited set of predecessors, see below). Moreover, for
each link, starting at processor u ∈ P and ending at processor v, there exists a
corresponding incoming memory INu

v in v, which is used by v to store incoming
messages sent by u. Note that INu

v contains only one message. A processor v
only stores the latest received message from u. In addition, processor v owns an
output memory denoted by OUTv. All these memories are private, and can only
be read or written by v (note that v only reads INv, and only writes OUTv). In
the following, we identify the name of a memory with the value it contains. In
the same way, a message is considered as equivalent to its value.

Processor v performs a calculation by applying an operator � (see § 3.3) on
all of its incoming memories, and stores the result in its output memory OUTv

(see also Figure 2).

3.2 Algorithm

In [11] is defined a Parameterized distributed Algorithm (denoted as PA), and
proved that it is self-stabilizing when � is a strictly idempotent r-operator (see
§ 3.3). That algorithm uses shared registers to permit communication between
neighboring processors. In this paper, we design a similar parameterized distrib-
uted protocol for Message Passing systems (denoted as PA-MP). This protocol
is composed of one local parameterized algorithm per processor v of P , denoted
by PA-MP|�v , where �v is an operator used as a parameter (parameters could
be slightly different on each processor, see Hypothesis 2).

This local algorithm calls three helper functions: Storev(m, u) stores in the
local register INu

v the contents of the message m; Evaluatev(�v) stores in the
local register OUTv the result of the local computation �v(INv, INu1

v , . . . , INuk
v)

where u1, . . . , uk are direct predecessors of v (∈ Γ−1
v); Forwardv sends OUTv to

w for each processor w ∈ Γ+1
v .

74 S. Delaët, B. Ducourthial, and S. Tixeuil

The local algorithm PA-MP|� on processor v is composed of two guarded
actions, which are atomic sets of instructions (actions) executed when a pre-
condition (guard) is fulfilled (see Figure 3).

Rule R2 makes use of a timeout mechanism. This timeout is required for
stabilization purposes since [13] proved that no self-stabilizing algorithm could
exist in message passing systems if no kind of timeout mechanism is available.
The reason is that the system may start from an arbitrary global state where no
messages are in transit, so if no node has a sending action that is triggered by a
spontaneous timeout action, then the system is deadlocked. Rule R2 is also used
in case of message loss. In a typical implementation of our algorithm in an actual
system, the timeout mechanism should be tuned accordingly to the loss rate of
the communication links, in order that not too many spontaneous messages are
emitted, and that the stabilization time remains reasonable. Tuning this timeout
is clearly beyond the scope of this paper.

Also, note that when the system is stabilized, only spontaneous messages
are emitted (the condition of Rule R1 is never satisfied), so those spontaneous
messages are never retransmitted. So, in the stabilized phase, the overall number
of messages in the system is O(m), where m is the number of links in the network.

3.3 r-Operators

An infimum (hereby called an s-operator) ⊕ over a set S is an associative,
commutative and idempotent binary operator. Such an operator defines a partial
order relation �⊕ over the set S by x �⊕ y if and only if x⊕y = x and then
a strict order relation ≺⊕ by x ≺⊕ y if and only if x �⊕ y and x �= y.

It is generally assumed that there exists a greatest element on S, denoted
by e⊕, and verifying x �⊕ e⊕ for every x ∈ S. Hence, the (S,⊕) structure is
an Abelian idempotent semi-group with e⊕ as identity element. The prefix semi
means that the structure cannot be completed to obtain a group, because the
law ⊕ is idempotent (see [3]).

When parameterized by such an s-operator ⊕, the PA-MP parametric local
algorithm converges [10]. However, some counter examples show that it is not
self-stabilizing [11].

R1 Upon receipt of a message m sent by u:
if m
= INu

v , then
Storev(m, u)
Evaluatev(
v)
Forwardv

end if
R2 Upon timeout expiration:

Evaluatev(
v)
Forwardv

reset the timeout

Fig. 3. Local algorithm PA-MP|�v on processor v

Self-stabilization with r-Operators Revisited 75

In [10], a distorted algebra — the r-algebra — is proposed. This algebra
generalizes the Abelian idempotent semi-group, and still allows convergence of
wave-like algorithms: the three basic properties (associativity, commutativity,
idempotency) defining the s-operators are generalized using a mapping (usually
denoted r). For instance, the binary operator � defined on N by x�y = x + 2y is
not associative. However we have x�(y�z) = (x�y)�2z = x�y�2z = x + 2y + 4z
and � is r-associative with the mapping x �→ 2x.

Definition 1. The binary operator � on S is an r-operator if there exists
a surjective mapping r called r-mapping, such that the following conditions
are fulfilled: (i) r-associativity: ∀x, y, z ∈ S, x �(y � z) = (x � y) � r(z); (ii)
r-commutativity: ∀x, y ∈ S, r(x) � y = r(y) � x; (iii) r-idempotency: ∀x ∈
S, r(x) � x = r(x) and (iv) right identity element: ∃e� ∈ S, x � e� = x.

For example, the operator minc(x, y) = min(x, y + 1) is an r-operator on
N ∪ {+∞}, with +∞ its right identity element.

Given an r-operator �, one can show that the r-mapping r is unique, and is
an homomorphism of (S, �). Moreover, the r-operator defines an s-operator on
S by x � y = x⊕r(y), and e⊕ = e�. We also have r(e⊕) = e⊕. For instance, the
r-operator minc is based on the s-operator min and on the surjective r-mapping
r(x) = x + 1.

If no fault appears in the distributed system S, our PA-MP algorithm sta-
bilizes when it is parameterized by any idempotent r-operator �. Idempotent
r-operators verify x �⊕ r(x) for any x ∈ S. This last property leads to the
definition of strict idempotency, verified for instance by the r-operator minc:

Definition 2. An r-operator � is strictly idempotent if, for any x ∈ S \ {e⊕},
we have x ≺⊕ r(x).

The operator minc(x, y) = min(x, y + 1) (for minimum and increment) is a
strictly idempotent r-operator on N ∪ {+∞}, with +∞ as its identity element.
It is based on the s-operator min and on the surjective r-mapping r(x) = x + 1.

Finally, binary r-operators can be extended to accept any number of ar-
guments. This is useful for our algorithm because a processor computes a re-
sult with one value per direct predecessor plus its own initialization value.
An n-ary r-operator � consists in n − 1 binary r-operators based on the
same s-operator, and we have, for any x0, . . . , xn−1 in S, �(x0, . . . , xn−1) =
x0⊕r1(x1)⊕ · · ·⊕rn−1(xn−1). If all of these binary r-operators are (strictly)
idempotent, the resulting n-ary r-operator is said (strictly) idempotent.

3.4 Hypotheses

In this section, we formalize some hypotheses, introduce some notations, and
give basic lemmas that are used throughout the proofs.

Hypothesis 1. In the distributed system S, links may (fairly) lose, (finitely)
duplicate, and (arbitrarily) reorder messages that are sent by neighboring proces-
sors. However, any message sent by u on the link (u, v) that is not lost is eventu-
ally received by v (i.e. no message may remain in a communication link forever).

76 S. Delaët, B. Ducourthial, and S. Tixeuil

This is a weak hypothesis on link’s reliability. However, the following lemma
is immediate.

Lemma 1. Let consider a communication link (u, v) ∈ L. If the origin node u
keeps sending the same message infinitely often, then this message is eventually
received by the destination node v.

Hypothesis 2. In the distributed system S running the PA-MP algorithm, any
processor v runs the local algorithm defined in Figure 3 and parameterized by a
strictly idempotent (δv + 1)-ary r-operator. Moreover, all these r-operators are
defined on the same set S, and are based on the same s-operator ⊕, with e⊕ their
common identity element.

In other words, this hypothesis ensures a form of homogeneity in the dis-
tributed system we consider. The following lemma is a direct application of
Hypothesis 2, Definition 1, and Evaluate function:

Lemma 2. Let �v be the r-operator used by processor v. Then the computation
of the Evaluatev(�v) function can be rewritten as:
�v (INv, INu1

v , . . . , INuk
v) = INv⊕ru1

v (INu1
v)⊕ · · ·⊕ruk

v (INuk
v).

Hence, there is one r-mapping per communication link. We now define the
composition of these mappings along a path (Xu,v denotes the set of all elemen-
tary paths from u to v).

Definition 3. Let Pu0,uk
∈ Xu0,uk

be a path from processor u0 to processor
uk, composed of the edges (ui, ui+1) (0 ≤ i < k). Let ri

i+1, 0 ≤ i < k, be the r-
mapping associated to the link (ui, ui+1). The r-path-mapping of Pu0,uk

, denoted
by rPu0,uk

, is defined by the composition of the r-mappings ri
i+1, for 0 ≤ i < k:

rPu0,uk
= rk−1

k ◦ · · · ◦ r0
1.

Our proofs of correctness assume that any result produced on a node with
the Evaluatev(�v) function (see Lemma 2) is either the initial value of the node
(INv) or one of its incoming value transformed by an r-mapping (rui

v (INu1
v)). For

this purpose, we admit that the order �⊕ defines a total order. Note that with
stronger nodes synchronization, such hypothesis is not necessary (see [12], where
a proof for composite atomicity in a shared memory model is given).

Hypothesis 3. The order relation �⊕ is a total order relation: ∀x, y ∈ S, either
x �⊕ y or y �⊕ x.

Hypothesis 4. The set S is either finite, or any strictly increasing infinite se-
quence of values of S is unbounded (except by e⊕).

Assuming Hypothesis 3, Hypothesis 4 specifies that the values used in the
distributed system S can be, for instance, integers but not reals. Note that
truncated reals (as in any computer implementation) are also convenient. Hy-
potheses 2 and 4 give the following lemma:

Self-stabilization with r-Operators Revisited 77

Lemma 3. The set S is either finite or any r-mapping r used in S verifies:
∀x ∈ S \ {e⊕}, r(x) ≺⊕ e⊕.

Hypothesis 5. Each processor v admits at least one predecessor u ∈ Γ−
v such

that INu �= e⊕, u is called a non-null processor.

In the following, we denote by ÔUTv the legitimate output of processor v.
Moreover, for any processor v, any predecessor u of v and any configuration c,
we denote by OUTv(c) and INu

v (c) the value of the memories OUTv and INu
v in the

configuration c.

3.5 Our Result

Our protocol is dedicated to static tasks. Such tasks (e.g., the distance compu-
tation from a processor u) are defined by one output per processor v (e.g., the
distance from u to v), which is the legitimate output of v. With our PA-MP al-
gorithm, this means that, after finite time, each processor v ∈ P should contain
this output (e.g., d(u, v)) in its outgoing memory OUTv. To solve static tasks with
the PA-MP distributed algorithm, one must use an operator as parameter (e.g.,
minc for distance computation) such that the distributed system S reaches the
legitimate configurations and do not leave them thereafter (i.e., any processor
reaches and then conserves its legitimate output). In this paper, we prove that
if the operator is used to parameterize the PA-MP distributed algorithm, then
it is self-stabilizing, according to the hypotheses of § 3.4.

Let us define the legitimate outputs of the processor using the r-operators
that parameterize the PA-MP algorithm. For instance, to solve the distance
computation problem, we state S = N ∪ {+∞}, and each local algorithm is
parameterized by the minc r-operator (see § 3.3 and Figures 2). All processors v
verify INv = +∞ except a non null processor u verifying INu = 0 (0 is absorbing
while +∞ is the identity element for minc). Each r-path-mapping adds its length
to its argument (i.e., rP (x) = x + length(P)), and we have:

d(u, v) = min

(
INv, min

w∈Γ −
v ,Pw,v∈Xw,v

{
rPw,v (INw)

})

We now define the legitimate output of a processor v in the general case.

Definition 4 (Legitimate output). The legitimate output of processor v is:

ÔUTv = INv⊕
⊕

u∈Γ −
v ,Pu,v∈Xu,v

rPu,v (INu)

The following lemma is given by Lemma 3, Hypothesis 5 and Definition 4; it
is used for proving Theorem 1.

Lemma 4. The set S is either finite or any processor v ∈ P verifies: ÔUTv ≺⊕
e⊕.

78 S. Delaët, B. Ducourthial, and S. Tixeuil

Now we defined ÔUTv, we define the set of legitimate configurations L ⊂ C of
the protocol PA-MP (see Section 3 and Figure 3):

Definition 5 (Legitimate configuration). For any configuration c ∈ L, for
any processor v ∈ P, OUTv(c) = ÔUTv.

Finally, after defining the distributed system S, the generic algorithm
PA-MP, the r-operators used as parameters and some Hypotheses, we can ex-
press the main result of this paper as follows, which is proved in the following
section:

Theorem 1. Algorithm PA-MP parameterized by any strictly idempotent r-
operator is self-stabilizing in directed message passing networks, despite fair loss,
finite duplication and reordering of messages.

Due to space constraints, only the sketch of the proof is given here; the
detailed proof can be found in [5].

Proof. (Sketch) The message passing model that we consider leads to hard
difficulties (compared for instance to shared memory model [11]). Indeed, with
this model it is possible that an initially wrong message remains in a link for
quite a long (finite) time (e.g. after several new messages have been exchanged)
and then is delivered to cause havoc in the system. Despite weak hypotheses
on the communication capabilities of every link (u, v), and possible transient
failures that could corrupt data in links or nodes communication buffers OUTu

and INu
v , we have to prove that eventually any input value read by v in INu

v has
effectively been sent by u. Even though this is true, it does not imply that a
value sent by u will be received by v. Hence, a legitimate value sent by u could
be lost in (u, v), while the inputs of u that were used to produce it disappeared,
either because of transient failures, or simply because they were overwritten by
other incoming values. This means that legitimate values could completely be
removed from S.

We actually have to prove that a value received by v on (u, v) has been
sent by u after a given configuration. This configuration is chosen such that
the value of u fulfills some predicates. One of those predicates is that this value
has been built using incoming values of u sent by its predecessors after a given
configuration. This permits to use recursivity along paths of the network.

By weak fairness, any processor v calls Evaluate for updating its output
OUTv using its inputs. By properties of the r-operators, and using the total order
Hypothesis (Hyp. 3), this output is either built with INv or with a received value,
say INu

v . After the last transient failure, and since duplications are finite on the
link (u, v), any value received by v has been sent by u. Since every perturbation
on the link is finite, there is a finite number of configurations between the sending
of the value by u and its receipt by v. Thus, if we consider a configuration that
is far enough in the execution, v must have updated its output using a value
received by u after u has itself updated its output too. This way, we can prove
that any output is smaller or equal than the legitimate value, which means that
every large unlegitimate value eventually disappears from the network.

Self-stabilization with r-Operators Revisited 79

To complete the proof of correctness, we still have to prove that every proces-
sor v may not remain with a smaller value than its legitimate one. Suppose this
is the case, then by reusing a recursive reasoning, we obtain an infinite path
of processors, such that their outputs are strictly increasing along the path (by
the strict idempotency property of the r-operators). Since such a path does not
exists in the network (that is finite), it is a cycle. This means that, successive
outputs of v increase without ever reaching its legitimate value. That contradicts
Hypothesis 4.

4 Concluding Remarks

We presented a generic distributed algorithm for message passing networks ap-
plicable to any directed graph topology. This algorithm tolerates transient faults
that corrupt the processors and communication links memory as well as intermit-
tent faults (fair loss, reorder, finite duplication of messages) on communication
media. Our contribution allows to envisage new applications for wireless net-
works (such as sensor networks), where nodes are not aware of their neighbors,
and communications could be unidirectional (e.g., non uniform power) and un-
reliable.

The algorithm can be instantiated to produce distributed algorithms for
both fundamental and high level applications (see [11,12]). We quickly sketch
two simple applications of the generic algorithm. First, to solve the shortest
path problem with r-operators, it is sufficient to consider N ∪ {+∞} as S, +∞
as e⊕, min as ⊕, and x �→ x + cu,v as rv

u (where cu,v is the cost of the link
(u, v)). Second, in a telecommunication network where some terminals must
chose their “best” transmitter, distance is not always the relevant criterium,
and it can be interesting to know the transmitter from where there exists a
least failure rate path, and to know the path itself. If we consider [0, 1] ∩ R as
S, 0 as e⊕, max as ⊕, and x �→ x × τv

u as rv
u (where τv

u is the reliability rate
of the edge between u and v, with 0 < τv

u < 1) our parameterized algorithm
ensures that a best transmitter tree is maintained despite transient failures (in
a self-stabilizing way). More complex applications can be solved with specific
r-operators, though the completeness of r-operators is an open problem.

Acknowledgements. We are grateful to the anonymous reviewers that helped
to improve the quality of our presentation. This work was supported in part by
the FRAGILE and SR2I projects of the ACI “Sécurité et Informatique”.

References

1. Y Afek and A Bremler. Self-stabilizing unidirectional network algorithms by power
supply. Chicago Journal of Theoretical Computer Science, 4(3):1–48, 1998.

2. Y Afek and G M Brown. Self-stabilization over unreliable communication media.
Distributed Computing, 7:27–34, 1993.

80 S. Delaët, B. Ducourthial, and S. Tixeuil

3. F Baccelli, G Cohen, G Olsder, and J-P Quadrat. Synchronization and Linearity,
an algebra for discrete event systems. Wiley, Chichester, UK, 1992.

4. J A Cobb and M G Gouda. Stabilization of routing in directed networks. In Pro-
ceedings of the Fifth Internationa Workshop on Self-stabilizing Systems (WSS’01),
Lisbon, Portugal, pages 51–66, 2001.

5. S Delaët, B Ducourthial, and S Tixeuil. Self-stabilization with r-operators in un-
reliable directed networks. Technical Report 1361, Laboratoire de Recherche en
Informatique, April 2003.

6. S Delaët and S Tixeuil. Tolerating transient and intermittent failures. Journal of
Parallel and Distributed Computing, 62(5):961–981, 2002.

7. S Dolev. Self-stabilization. The MIT Press, 2000.
8. S Dolev, MG Gouda, and M Schneider. Memory requirements for silent stabiliza-

tion. Acta Informatica, 36(6):447–462, 1999.
9. Shlomi Dolev and Elad Schiller. Self-stabilizing group communication in directed

networks. Acta Inf., 40(9):609–636, 2004.
10. B Ducourthial. New operators for computing with associative nets. In Proceedings

of SIROCCO’98, Amalfi, Italia, 1998.
11. B Ducourthial and S Tixeuil. Self-stabilization with r-operators. Distributed Com-

puting, 14(3):147–162, 2001.
12. B Ducourthial and S Tixeuil. Self-stabilization with path algebra. Theoretical

Computer Science, 293(1):219–236, 2003.
13. S Katz and K J Perry. Message passing extensions for self-stabilizing systems.

Distributed Computing, 7(1):17–26, 1993.
14. N A Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

Self-stabilization Preserving Compiler�

(Extended Abstract)

Shlomi Dolev1, Yinnon Haviv1, and Mooly Sagiv2

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, 84105, Israel

{dolev, haviv}@cs.bgu.ac.il
2 School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel

msagiv@acm.org

Abstract. Self-Stabilization is an elegant approach for designing fault
tolerant systems. A system is considered self-stabilizing if, starting in
any state, it converges to the desired behavior. Self-stabilizing algorithms
were designed for solving fundamental distributed tasks, such as leader
election, token circulation and communication network protocols. The al-
gorithms were expressed using guarded commands or pseudo-code. The
realization of these algorithms requires the existence of (self-stabilizing)
infrastructure for their execution such as a self-stabilizing microprocessor
and a self-stabilizing operating system. Moreover, the high-level descrip-
tion of the algorithms needs to be converted into machine language of the
microprocessor. In this work, we present a design for a self-stabilization
preserving compiler designed for programs written in a language sim-
ilar to the abstract state machine (ASM). The compiler preserves the
stabilization property of the high level program.

1 Introduction

Self-stabilization is an important fault-tolerance paradigm [4,5]. A system that
is designed to be self-stabilizing automatically recovers from an arbitrary state,
which is a state reached due to unexpected failures. The self-stabilization prop-
erty is not tied to replications as other well studied fault models are. In particu-
lar, to cope with Byzantine failures one needs to have redundancy in the number
of processors. In fact, the self-stabilization property is orthogonal to replication
techniques that are used to mask faults (e.g., [5,10,16]). Moreover, the traditional
time/space redundancy techniques may be combined with self-stabilization to
ensure automatic recovery, even in the cases in which the redundancy is not
sufficient to mask the faults.

There are major investments for obtaining industrial systems with self-
healing, self-controlled, automatic recovery, autonomic computing and similar

� Partially supported by Microsoft, IBM, NSF, Intel, Deutsche Telekom, Rita Altura
Trust Chair in Computer Sciences, Intel, vaatat and Lynn and William Frankel
Center for Computer Sciences.

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 81–95, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

82 S. Dolev, Y. Haviv, and M. Sagiv

properties [12,14,3,9]. We believe that the self-stabilization property is funda-
mental for achieving the self management goals. Moreover, self-stabilization is a
property that is defined in terms of the states and the runs of the system and
therefore is rigorously verified.

Several existing algorithms for on-going tasks (as opposed to one shot tasks)
were designed to be self-stabilizing. For example, the routing tables of the Inter-
net are based on a self-stabilizing algorithm (e.g., [22]). This is no coincidence,
since the operation of this algorithm should cope with unexpected situations,
which occur, for example, due to an undetected corrupted message arrival, tran-
sient errors or processor crashes.

Core components of computer and communication systems, such as micro-
processors and communication routers have to be self-stabilizing in order to
ensure recovery and continuous operation. In particular, a self-stabilizing mi-
croprocessor will ensure the execution of a program [6]. Then a self-stabilizing
operating system [11] should ensure that eventually the resources of the com-
puter are well managed. In this work, we consider a very important building
block towards the vision of practical self-stabilizing systems. Namely, we ex-
amine high-level languages for writing self-stabilizing programs and the way to
compile them into machine code.

Languages that are based on state machines are natural candidates for writ-
ing and arguing about self-stabilizing programs. The reason for such a choice is
that the stabilization arguments consider any possible state, namely any content
of variables, and prove convergence to a subset of safe states from which the run
behaves as desired. Guarded commands [4], Input Output Automata [20], and
Abstract State Machine (ASM) [15] are three bold examples for state based pro-
gramming languages. We note that a pseudo code description of self-stabilizing
algorithms stated in a different format, can be transferred to the above rep-
resentation, integrating a mechanism that mimics a program counter into the
guards. We choose a variant of ASM as the high-level programming language,
that is inspired by the guarded commands language. We note that our results
are applicable to other choices of programming languages as well.

In order to enable the compilation of existing distributed self-stabilizing algo-
rithms into machine code, we have also examined the Distributed Abstract State
Machine (DASM) language. Part of our contribution is a design that extends the
DASM primitives in a way that supports refined operations in the level of read
or write operations to safe, regular or atomic registers. The new primitives are
mapped directly to the underlined hardware (the exact communication register
used). The programmer is responsible for the correct operation (and proof) of
the program using the refined communication devices. We note that in [21] a
language and a compiler for protocols are described. Our work compliments the
work of [21] in the sense that we present a compiler that ensures convergence of
each processor (either in a stand-alone system or as a part of a distributed sys-
tem) when started in an arbitrary state of the compiled program. We take into
account refined states produced by the compiler to implement the transitions
defined by the high level language.

Self-stabilization Preserving Compiler 83

We show that a usage of off-the-shelf (ASM) compiler with a consistency
check, in which there is no given correspondence function between the original
ASM state and the refined machine state, is a hard task. In fact we show, in
Section 3, that given a refined machine state it is NP hard to find whether a cor-
responding state of the ASM program exists. We then turn to the positive side.

Given a self-stabilizing program written in ASM we would like to produce a
machine code that eventually has the same input output relation as the original
ASM program. Roughly speaking, we use the fact that ASM execution is com-
posed of moves, each corresponding to the evaluation of a rule and the updating
of the current state. The syntax of ASM allows only bounded loops within a
rule, which causes each move to be executed in finite time. This enables our
compiler to create a code that efficiently checks the validity of the state in be-
tween consecutive moves. We prove that the machine code portion produced by
our compiler for an ASM rule can be executed from any point (program counter
and arbitrary microprocessor state) and still terminate. The machine code pro-
duced is a sequence of portions, where each portion reflects a rule. Hence, no
matter where we start the execution of the machine code the execution of a rule
terminates and an additional portion of consistency check of the current state
is executed. The consistency check verifies that the variables that correspond
to the original ASM program are in their value range and the data structures
used by the execution environment e.g., the scheduler of the ASM rules are also
consistent.

1: ...:
2: PUSH 0 // i ← 0
3: LOOP:
4: LDC W objref
5: LOAD 1 // i
6: INVOKEVIRTUAL f //

calling f(i)
7: POP
8: INC 0, 1 // i + +
9: LOAD 0

10: PUSH 10
11: IF ICMPEQ END // if

i = 10, exit
12: GOTO LOOP
13: END:
14: ...

Fig. 1. Example of code gener-
ated for a loop which does not
preserve self-stabilization

Motivating Example: We now present a sim-
ple example for motivating the self-stabilization
preserving compiler. Figure 1 consists of an ex-
ample of IJVM code produced for the state-
ment for i=0 to 9 do f(i). The commands
used are analogous to the ones presented in [23].
Line 2 initiates the local variable i to zero. Lines
4 − 12 contain the code for one iteration. Line
4 − 7 call f(i). Line 8 increases i by one. The
end condition for the loop is checked in lines
9 − 11. Line 9 makes a copy of i, line 10 pushes
the value 10 to the stack and line 11 pops the
two recently pushed values from the stack and
branches out of the loop code if they are equal.
Finally, if i is not equal to 10, then the loop
execution is repeated due to the unconditional
jump in line 12.

The programmer assumes that f(i) will be
executed at most ten times (even when started
at an arbitrary state). However, in case the value of i is equal to 11 (or −230)
and the program counter is inside the loop (e.g., line 4) the loop, practically,
becomes an infinite loop. The reason for the corruption of i may be a soft error
in the memory or other transient fault, see e.g., [18].

84 S. Dolev, Y. Haviv, and M. Sagiv

Moreover, even when a range check of the loop variable is added to the code of
the loop, an existing optimizer will consider the additional check as a redundant
code and remove it. Thus, we have to examine and define the requirements for
the compiler and the optimizer.

Our Contribution: (a) Examination of programming languages for writing self-
stabilizing algorithms and a choice of automata like description, namely ASM.
(b) The extension of ASM to refined ASM where each rule of the ASM includes
at most one communication operation (e.g., read, write, send, receive) and a
full correspondence of the communication operation to the given hardware; for
example, a read that overlaps a write from/to a safe register returns an arbi-
trary value. (c) Definitions of the requirements for a self-stabilization preserving
compiler. (d) Design of a self-stabilization preserving compiler.

The rest of the paper is organized as follows: The settings of the problem and
technical description of ASM and DASM are described in Section 2, in particular
we suggest special features and extensions in order to compose and compile
self-stabilizing programs. In Section 3 we give an indication on the intricacy of
the problem, proving that a usage of a black-box off-the-shelf compiler may be
infeasible. The self-stabilization preserving compiler is described in Section 4.

2 Settings for Self-stabilization Preserving Compiler

We start with a brief description of a variant of the abstract state machine, that is
inspired by Dijkstra’s guarded commands. Then we describe the distributed and
refined abstract state machines. We summarize by presenting the requirements
for a self-stabilization preserving compiler.

2.1 Abstract State Machines and Guarded Commands

Abstract State Machines (ASM) [15,2] serve as an efficient tool for the design,
description and provable refinement process of algorithms and systems. The algo-
rithm designer may specify the algorithm in an abstract form that simplifies the
correctness proof process. ASM is designed to support the refinements process
in which the proof of the abstract description is preserved during the conversion
of the algorithm into its implementation. Originally, ASM was defined by its sig-
nature, and its main rule. Roughly speaking, the signature is equivalent to the
program variables definition and the set of function names, each associated with
its arity. The program code is expressed in the form of a rule, which calculates
the changes in the state. Inspired by Dijkstra’s guarded commands notation,
which is used intensively for describing self-stabilizing algorithms, we choose a
more general syntax for ASM. Here a program consists of a set of rules, each of
the form “upon 〈condition〉 do 〈statement〉”.

Given an ASM program with a set of rules {rule1, . . . , rulen}, a move of the
ASM starts in a choice of a rule from the set of rules for which the condition of
the rule is evaluated to true; then evaluating the statement that forms the body
of the chosen rule. When evaluating the body of the chosen rule, we use the state

Self-stabilization Preserving Compiler 85

prior to the activation of the rule. Updates to the state made by assignments
are registered in the update set and delayed until the evaluation of the rule is
finished. Finally, the obtained update set is used for changing the current state,
resulting in the next state. A run s1, m1, s2, m2, · · · is alternating sequence of
states and moves, such that, for every i ≥ 1 si+1 is obtained by the application
of the move mi to si. A run ru is a fair run iff every rule, rulei, for which there
are infinitely many states in ru in which the condition of rulei is true, is applied
to the system state in infinitely many moves of ru.

The program constructs is partitioned into three sets, the first set of con-
structs is the declaration constructs used for declaring locations (the ASM equiv-
alent to variables). For example the location x may be declared by: “location x
as range(0,2)”, which defines x to be an integer variable in the set {0, 1, 2}. The
second set of constructs is the term constructs used for assembling arithmetic
and boolean terms. The term constructs are evaluated to a value of one of the
basic variable types (boolean, integer).

The third and last set of constructs is the statement constructs used for
assembling statements, which evaluates to an update set. The most basic state-
ment construct is the assignment i.e., x(t1, . . . , tn) := t, where t1, . . . , tn, and t
are terms. Two more statement constructs are the par or seq which are used
to create blocks of statements, both constructs are parameterized with a pair
of statements, and evaluated as the parallel or sequential execution of the state-
ments, respectively. Bounded loops are available using the forall statement con-
struct which implies parallel evaluation of the statements in the loop for each
item in the forall set, which is an integer range. The forall statement constructs
allow the set that is iterated to be any continuous range of integers 1. The if and
the let statement constructs are also available.

For the sake of refining the DASM (discussed bellow) we added constructs
for reading and writing shared registers, as well as constructs for serializing /
deserializing data into/from a register variable.

2.2 Distributed and Refined Abstract State Machines

ASM assists also in the more complex settings of distributed systems. Distributed
ASM (DASM) is used for describing distributed algorithms and is very helpful in
specifying the behavior of protocols and proving their correctness [1]. A distrib-
uted system is modeled in DASM as a set of ASMs, also referred to as agents.

The asynchronous multi-agent ASM (asynchronous ASM) models a run as
an interleaving sequence [19] of moves of the ASM agents in the system. This is a
similar policy to the policy for activating guards in the guarded commands lan-
guage under the central daemon. Each guard is composed of a boolean condition,
and a body that is expressed using pseudo-code. The existence of a scheduler
or central daemon in a multi-tasking single processor system may be justified.
However, system hardware usually does not support a single global scheduler in
distributed environments.
1 ASM originally allows the expression of any set in the form of {x : Ψ(x)}, iterating

such a set may not be computationally feasible.

86 S. Dolev, Y. Haviv, and M. Sagiv

It is important to refine the DASM and the guarded commands granularity
execution to directly reflect the promise of the underlining hardware, leaving
the responsibility for mimicking (the coarse) atomic execution of guards for the
programmer (when such a mimic is desired) [8,5,13]. Note that such emulation
restricts the set of schedules in which progress is made. One may like to be able to
design the algorithm in a way that he/she is aware of and use the exact hardware
promises in the most efficient way, thus avoiding the cost of mimicking the extra
synchronization abstraction. In a way, the extreme of this tradeoff has some sim-
ilarity to the tradeoff between wait-free algorithms and synchronous algorithms.

Our refined DASM (a) includes the register type as part of the DASM (where
a register is associated with a location) (b) restricts the number of communica-
tion operations in the statement of every rule to be at most one, and (c) a read
from a register and a write to a register are directly translated (by the compiler)
to read and write communication operations supported by the given hardware.

The requirement of at most one communication operation in a rule allows
us to keep the convention of rules interleaving, as if in every given time at
most one move is executed (where a move is an execution of a rule). We note
that in the case of safe or regular register the interleaving is in terms of the
beginning and the corresponding end of the communication operations. A move
in which a communication operation to such a register takes place, starts the
communication operation that is then pending to be ended by the next move of
that agent.

Note that the state of the system includes the registers states. The system
state includes for every register reg the set of operations that are not finalized
for reg and the values associated with them.

2.3 Self-stabilization Preserving Requirements

In this section we present the requirements from a stabilization preserving com-
piler. We restrict our attention to compilers which process the code of each of the
ASM agents independently. Using such a compiler, the stabilization property of
the entire system is preserved by the following arguments. Each processor (low
level) program stabilizes into the behavior of the high level ASM program it was
compiled from. Only then the system stabilizes due to the self-stabilization prop-
erty of the original algorithm. We start with a few standard definitions needed
for arguing concerning the compiled code. We define terms analogous to move
and run of ASM for the (lower) processor level behavior description.

We view a processor as a state machine that changes state by executing
atomic steps or simply steps. A state of a processor is defined by the contents of
its memory including the program counter and other internal registers. We use
s

a→ s′ to denote a state change of a processor from the state s to state s′ due to
the execution of a step a. We view the step a as an execution of a single machine
command (of the compiled code). An execution is a sequence s1, a1, s2, a2, . . .

such that si
ai→ si+1 for every i ≥ 1. In the scope of a distributed system we

use the term configuration for a vector of processors states and communication
entities states (either registers or communication channels).

Self-stabilization Preserving Compiler 87

Since the specification of legal system behavior is given by the required input
output relation, and since our compiler wishes to preserve this behavior in some
sense, we establish the term trace both for executions and for runs. Formally,
each move and atomic step is associated with zero or one I/O operations. For
example, if m is a move of a DASM that reads the value 42 from register r22 into
internal variable v22 and changes the value of some more internal variables, then
m is associated with the I/O operation 〈read, r22, 42〉. The trace of a run (or an
execution) is obtained by first reducing the sequence only to moves (atomic steps,
respectively) which are associated with an I/O operation, and then replacing
those moves with their associated I/O operation. Given an ASM or a machine-
code program A and a state s of A, we define �A�(s) to be the set of traces of
A, when started in s.

valid

erroneous

intermediate

Fig. 2. Above, the state space of the
original, high level, program. Below,
the state space of the compiled, low
level, program.

Existing compilers guarantee, when com-
piling a program PRh into a program PRl,
that the set of traces exhibited by both pro-
grams, when started at their initial states
will be the same. Formally, if sh is the ini-
tial state of PRh and sl is the initial state
of PRl then traditional compilers guaran-
tee that �PRh�(sh) = �PRl�(sl). Our re-
quirements are different. Since we would like
our compiled program to be self stabilizing,
we require that the trace of an execution of
the compiled program, when started in any
state, will eventually be a trace of a run of
the original program started in some state.
Formally, we require that for all state sl of
PRl, and for each trace tr ∈ �PRl�(sl), there
exists a suffix tr′ of tr, and a state sh of
PRh, for which tr′ ∈ �PRh�(sh). When this
condition holds, we say that PRl eventually
behaves the same as PRh.

In particular, there may exist states of the compiled program that are not
reachable from the initial state and do not correspond to states of the original
program/programs. Nevertheless, we require that starting in these additional
states the traces of the system will have a suffix that is the same as the traces
of a run of the original ASM program.

Figure 2, illustrates the concept presented above. In the upper portion of
Figure 2 an automaton of a given (refined) ASM is illustrated. States are repre-
sented by circles, and moves, defined by the possible ASM rule execution from
each state, are represented by arrows between states. In the lower portion of
Figure 2, the automaton of the compiled program is illustrated. Each move of
the original program is refined into several steps in the compiled program. Since
the state space of the compiled program includes erroneous states which are not
reachable from any valid state, our compiled code must make sure that these er-

88 S. Dolev, Y. Haviv, and M. Sagiv

roneous states are transient and eventually the program reaches one of the valid
states (i.e., the existence of the dotted arrows), and from which the input/output
trace is the same as the input/output trace of the original program.

Caution Required While Optimizing: Most optimizations take advantage
of the fact that there exist portions of code in the compiled program whose
execution transforms the state from one valid state to another, traveling through
intermediate states. These portions of code are replaced by the optimizer with
more efficient portions, with respect to one or more efficiency measurements
(time, space, instruction parallelism level, etc.). The replaced code is considered
equivalent to the original code if it performs the same function on the state.
Some of the optimizations use syntactic analysis of the target program, to obtain
assertions on the state when certain program addresses are reached. Using such
assertions allows the optimizer to relax the equivalence condition between the
original and optimized code to states respecting the assertions.

Syntactic analysis is often used for omitting unnecessary code, usually check-
ing conditions that will never (or always) be met. Notice that a code that im-
plements a bounded loop such as “For i=0 to 9 do f(i)” in a self-stabilizing
manner will check, in each iteration, that both the end condition is not reached
and that i ≥ 0, to ensure that the loop is executed at most ten times, even from
a corrupted state. The code that checks that i is not negative will be consid-
ered redundant by the optimizer and will be removed, which will result in a non
self-stabilizing code.

3 The Complexity of Using Off-the-Shelf Compiler

One possible way to create a self-stabilization preserving compiler might be to
use an existing compiler and modify the code produced. Here we examine such
an approach, in which one would like to add a procedure that repeatedly checks
whether the state sl of the a processor in the system (that executes the compiled
code) corresponds to a state sh of the original ASM.

More formally given an ASM program PRh, a low level program PRl, and
two states sh, sl of the programs PRh, PRl, respectively, we say that sh directly
corresponds to sl if the set of traces produced by PRl when started in sl is the
same as the set of traces produced by PRh when started in sh. A state sl of
PRl is called valid if there is a state sh of PRh such that sl directly corresponds
to sh, and invalid otherwise. The state-correspondence-problem is defined
as follows: Given PRh, PRl, sh, and sl as above, find whether sl is a valid state.
Using such a procedure, one can repeatedly check the validity of the current
state and reset PRl to a predefined state in case it is in invalid state.

First, we note that in the scope of self-stabilization the number of variables
is bounded and so are their domains. A designer of a self-stabilizing program
cannot assume that a counter of 64 bits that is repeatedly incremented by one
may suffice (by claiming that reaching the upper bound will take longer than the
time a system exists) since every initial value is possible, in particular equal to
the maximal value [5]. This is in fact an observation on the computation power

Self-stabilization Preserving Compiler 89

of processors in a self-stabilizing system. The computation power is the one of a
bounded hardware systems, that may be well represented by a finite automata,
as opposed to the infinite working tape of a Turing machine. Thus, the state
spaces of both programs, PRh and PRl are finite.

The following theorem shows that when no knowledge on the compiler trans-
formation exists, the use of a procedure that repeatedly checks, given sl whether
a given state sl is valid is computationally intractable, (the proof can be found
in [7]).

Theorem 1. The state-correspondence-problem is NP-Hard.

4 Self-stabilization Preserving Compiler

Figure 3(a) gives a bird’s eye view on how the code generated from our compiler
is structured. The code for evaluating the conditions of each of the transition
rules is placed following the scheduling code (which is described in section 4.3).
The code compiled from the body of each transition rule is placed just below
the scheduling code. Executing the code compiled from a body of a transition
results in an update set, which is applied in the apply-update-set section. The
enforce-invariants section contains a code for ensuring that a state sl of the pro-
duced code corresponding to a state sh of the original ASM program is reached.
Executing this code section from its first line ensures that sl is a valid state,
namely, that there is a state sh such that the set of traces of the executions
starting from sl is equal to the set of traces of the runs that start in sh. Thus,
from this point on, the behavior is the same as the behavior of the original (re-
fined) ASM. Details on the content of the enforce-invariants section are given in
sub section 4.1.

The basic idea for designing the compiled code is to make sure that regard-
less of the current state, the program counter will reach the beginning of the
enforce-invariants section, after which the execution corresponds to the ASM
execution. Moreover, we design our compiler so that the enforce-invariants sec-
tion is reached within 2 · Rmax steps, where Rmax is the maximal number of
steps used to implement a move of the original ASM.

We state two conditions on the transformation made by the compiler which
together ensure that our compiler does preserve the self-stabilization property:

C1. Starting in an arbitrary state of PRl the system reaches in 2 · Rmax steps
a state in which the first line of PRl is executed, namely the first line of the
enforce-invariant section.
C2. Executing the enforce-invariants section from its first line results in a valid
state. Moreover, if the state is already valid, executing the section will not change
the state.

Satisfying condition C1 is carried out by ensuring that the execution of each
of the sections described in Figure 3(a) terminates without any assumptions on
the state, even when started within the section. When the execution of a section

90 S. Dolev, Y. Haviv, and M. Sagiv

Scheduler

〈Statementk〉

〈Statement1〉

Variable Declaration

Upon 〈Conditionk〉 Do

Upon 〈Condition1〉 Do

Conditionk

Apply Update Set

Enforce Invariants

〈Statement1〉

〈Statementk〉

Condition1

(a) On the right, the structure of the compiled code
(with respect to the original refined ASM on the
left). The arrows illustrate the program flow between
the specified sections.

Global State

Live Stack

Update Set

next update

Update Context

Scheduler State

(b) The structure of
the memory used by
the target program

Fig. 3. The code and memory structure of the compiled program

terminates, the flow of the program continues by following one of the outgoing
arrows from that section as described in Figure 3(a). Note that every cycle in
the graph G = (V, E), where V are the sections and E are the directed arrows in
Figure 3(a), travels through the enforce-invariants node or section. Therefore,
eventually the first instruction of the enforce-invariants section is reached, and
condition C1 holds.

Satisfying condition C2 is explained in sub-section 4.1, which contains general
definitions for the transformation. In particular, sub-section 4.1 explains how we
map states of the original program to states of the compiled program and how the
execution of the enforce-invariant section ensures that we are in the image of that
mapping. sub-section 4.2 describe how terms and statements are transformed,
and sub-section 4.3 describes our implementation for a fair scheduler. Each of
the following sections shows that the execution of its corresponding code section
terminates, without any assumptions on the validity of the state, and from any
position within the code section.

4.1 General Definitions

Figure 3(b) describes the memory layout of the target program, PRl. The state of
the scheduler, which is described in sub-section 4.3 uses address 0 . . .N+1, where
N is the number of ASM rules in the source program PRh. The next addresses
are used for holding (a refinement of) the state of the original program.

Although IJVM, our target language, is stack machine oriented, we use only
a portion of the memory, the “Live Stack”, as a stack. Under normal opera-
tion, our stack pointer should always remain within the range of this section.
Moreover, since we use the “Live Stack” only for temporal computations the

Self-stabilization Preserving Compiler 91

enforce-invariants section may reset the stack pointer to the beginning of this
memory section, denoted live stack start. Note that, due to the fact that ASM
allows no recursion, we can bound the size of the stack a-priori.

In ASM, the update set is used for delaying updates, which in turn gives the
programmer semantics which is similar to parallel execution. For example, the
following statement swaps the value of locations x and y: “Par{x = y; y = x}”.
Therefore, as shown in sub-section 4.2, update statements do not immediately
change the global state, instead they register the update which is later applied.
The next update variable, together with the “Update Set” section are used for
representing the update set. The “Update Set” memory section is an array of
word pairs, containing the lvalue (left value) and rvalue (right value) of an
update. The next update variable is used for pointing to the next free cell in
the update set and advances upwards, starting from us start, the first address
of the “Update Set” memory section. ASM also supports the “Seq{〈s1〉, 〈s2〉}”
construct which implies sequential semantics; i.e., references made to locations
in s2 are evaluated in the presence of the updates induced by s1. The “Update
Context” section is used for supporting this feature, by representing the current
partial update set. The update context is maintained as a stack of continuous
updates, represented as pair of pointers to the “Update Set” section, marking
the beginning and end of continuous update sections. The right portion of Figure
4 illustrates the update set and update context when the statement r = x of
the code presented on the left portion of Figure 4 is executed. sub-section 4.2
elaborates on the transformation of the Seq construct and explains how the
update context is changed. The transformation of the assignment statement,
which increases the update set can be found in [7].

Each variable v of PRh (location, in ASM) is mapped to a specific memory
address range mv within the “Global State” section. Moreover, there exists a
mapping from each value of v to a distinct value of mv. The number of bits used
for mv suffices for representing every value of v. In some cases, as in the case of
variables of type range, it is impossible (or inefficient) to represent the exact set
of values associated with v by the values of mv and there are a few extra unused
values for mv. One important task of the enforce-invariants section is to ensure
that the current value of mv does correspond to a value of v.

We say that the state of PRl is valid if the following conditions hold: (a)
All the mv variables do correspond to the original range of their corresponding
ASM variables (b) The update set is empty (c) The scheduler state is valid (see

r = x

1x 1y 8z 4x
Seq

x = 1
Par

Par
y = x
z = y

Seq
x = x + 3

Fig. 4. The content of the update set and update context when executing statement
r = x of the code on the left. Here the initial value of y is 8.

92 S. Dolev, Y. Haviv, and M. Sagiv

Section 4.3) (d) The stack pointer is equal to live stack start (e) The program
counter points to the beginning of the scheduling code. We say that a state is
intermediate if it is not valid but can be reached from a valid state.

The enforce-invariants code section is responsible for achieving (a) to (e).
It starts by setting the stack pointer to live stack start, which ensures (d).
Then it performs, for each of the range variables, a range check and correction
if necessary, and by that it achieves (a). The value of next update is set to
us start, ensuring that (b) to holds. Next, the code for checking the validity
of the scheduler state is executed (see section 4.3). In case of corruption in
the scheduler state, the queue is set to the predefined (〈1, . . . , N〉) state. The
(e) requirement is obtained by ending the enforce invariants code section and
continuing sequentially to the scheduling code segment. We note that one may
extend the model to allow the ASM programmer to define an initial state that
should be enforced in case of a corruption.

Applying the Update Set: Applying the update set implies iterating over
the updates and applying each of them. Since the upper bound for this loop is
dynamic (next update), and may be corrupted, care must be taken. We use a
recursive computation on the parse tree to find an upper bound on the number of
updates induced by a rule, denoted max updates, and use it to calculate during
compile time the update set end , which is a constant upper bound for the loop.
Note that care must be taken also when applying an update since the lvalue of
the update may be corrupted in a way that it points to the address of the loop
variable, which may result in an infinite loop. The complete code for applying
the update set can be found in [7].

4.2 Transforming Statements

We focus on the transformation of statements; details for the transformation
of terms are similar and can be found in [7]. The code that is generated for a
statement s, should fulfill the following conditions:

[termination] When started at any position, it should terminate with no la-
tencies.
[stack coherence] When started in its initial position, it should terminate with-
out changing any memory element below the initial stack position. Moreover, it
should return with the stack pointer in its initial position.
[equivalence] When started in its initial position and in an intermediate state,
it should terminate with the update set computed from s added to the initial
update set.

Existing compilers (which do not preserve stabilization) may be satisfied by
condition [equivalence]. Our design requires condition [termination], but it
turns out that condition [termination] requires condition [stack coherence]
to hold. Again, as in the case of transforming terms the requirement to terminate
with “no latencies” in condition [termination]means that the number of steps
until termination is not grater than the (worst case) number of steps under
normal operation from of an intermediate state.

Self-stabilization Preserving Compiler 93

Implementing the Seq statement requires executing the second statement
with the update context together with the updates induced by the first state-
ment. The code generated for a Seq statement stores the value held in the
next update variable before and after executing s1 in the next free pair of the
update context. See [7] for the complete code generated for a Seq statement.

1: ...:
2: PUSH 〈start〉 // x ← start
3: GOTO FIRST LOOP SHORTCUT
4: LOOP:
5: DUP
6: PUSH 〈end〉
7: SUB
8: IFLT END LOOP // if x > end
9: DUP

10: PUSH 〈start〉 + 1
11: SWAP
12: SUB
13: IFLT ENFORCE INVARIANTS //

if x ≤ start
14: FIRST LOOP SHORTCUT:
15: 〈s〉
16: INC 0,1 // x + +
17: GOTO LOOP
18: END LOOP:
19: POP // x

Fig. 5. Compiling a statement of the form
“Forall 〈x〉 in [〈start〉, 〈end〉] do 〈s〉”, where
〈x〉 is an identifier, 〈start〉 and 〈end〉 are
integer literals and 〈s〉 is a statement

The code generated for a Forall
statement appears in Figure 5. The
code uses a local variable x for
iterating the range, prepared in line
2. On each iteration, we check the
variable x against the end of the loop
(lines 5 − 8), but also ensure that
x is not corrupted (lines 9 − 13).
Note that increasing a loop variable
and checking that it is in its range
is not enough for ensuring that the
[termination] condition holds for
this code or even that the code ter-
minates when started in a corrupted
state. If the code generated for s, the
body of the loop, does not satisfy
condition [stack], it may repeatedly
set our loop variable x to, say, the
beginning of the loop range which will
turn the loop into an infinite loop.

Lemma 1. The code generated for
a Forall statement satisfies condition
[termination].

Proof. Since the code for s satisfies
the [termination] condition, eventually line 4 of Figure 5 is reached and the
value of x is within its bounds. From that point on, the code for s is executed,
in every iteration, from its first line and condition [stack coherence] on s
ensures that x is not changed by s. The variable x is then advanced and checked
against its bounds on each iteration, and the execution of the code terminates.

The first loop shortcut label is used not only to speed the execution of
the generated code under normal operation, but also to ensure that the code of
s is executed at most end− start+1 times, as in a normal operation. Started in
any state, once the first execution of the code generated for s terminates, lines
5 − 13 are iterated at most end − start times. Therefore, there may be at most
end−start additional executions of the code generated for s before termination.

4.3 Implementing a Self-stabilizing Fair Scheduler

The scheduler, which is embedded in the compiled code, plays a crucial part in
the execution of the program. It is supposed to examine the conditions of (some

94 S. Dolev, Y. Haviv, and M. Sagiv

of) the transition rules, and fairly choose an enabled rule, that is, a rule for which
the condition evaluates to true. As in ASM, we assume that in every state of
the ASM, at least one of the rules is enabled. Notice that a simple round robin
implementation will not achieve such fairness, simply because there may be a
run in which a rule is enabled almost before every move, except before the move
in which it is its turn to be examined. A common way to ensure fairness is to
bound the number of times an enabled rule is not chosen until finally chosen.
In case there exists such a bound, a rule which is enabled infinitely often is also
chosen and executed infinitely often.

In order to achieve such a bound we choose to use a priority queue (see [17]
for a similar, action driven converging, structure). Whenever the scheduler is
required to choose a rule to execute, the rules conditions are examined according
to their order in the priority queue. When an enabled rule is found, it is moved
to the end of the queue and chosen as the next rule to be executed.

A straightforward implementation of the queue is using an array, containing
rule numbers in the order the rules appear in the priority queue. When using this
implementation, the queue will be considered consistent if the array contains a
permutation of {1, . . . , N}, where N is the number of rules. A code enforcing the
existence of such a permutation can be added to the enforce-invariants section.
Unfortunately, using this simple implementation takes Ω(N) steps to shift rules
in order to move the chosen rule to the end of the queue. In order to avoid such
latency, we use a more efficient implementation for the queue, which is equivalent
to a linked list, and for which the consistency can be enforced. An array of size
N + 2 denoted by Q is used for implementing the queue. The values in the first
and last entries of Q (Q[0] and Q[N + 1]) will be the index of the first rule and
the last rule in the queue, respectively. The value in Q[k] 1 ≤ k ≤ N is the
index of the rule that follows the kst rule or 0 in case the kth rule is the last
rule in the queue. For example, a queue with rules in the order 〈4, 2, 1, 3〉 will
be represented using the following 6 entries array [4, 3, 1, 0, 2, 3]. Where Q[0] = 4
indicates rule number 4 is the first rule in the queue. Then Q[4] = 2 implies
that rule number 2 follows. Continuing in the same manner we reach Q[3] = 0
indicating that rule number 3 is the last rule in the queue.

Using the above queue implementation allows one to move an element k in
the queue to the end of the queue by four simple updates, provided that the
element preceding k in the queue is also available. Moreover, queue consistency
can be checked by simply iterating through the queue elements and checking
that 0 is reached exactly after N hops.

Theorem 2. The IJVM program, PRl, generated by the compiler for an ASM
program PRh eventually behaves the same as PRh.

References

1. E. Borger, Y. Gurevich, and D. Rosenzweig, “The bakery algorithm: Yet another
specification and verification. In E. Borger, editor, Specification and Validation
Methods, pp. 231 – 243. Oxford University Press, 1995.

2. E. Borger and R. Stark, Abstract State Machines: A Method for High-Level System
Design and Analysis, Springer-Verlag, 2003.

Self-stabilization Preserving Compiler 95

3. O. Brukman, S. Dolev, E. Kolodner, “Self-Stabilizing Autonomic Recoverer
for Eventual Byzantine Software” IEEE International Conference on Software-
Science, Technology & Engineering, (SwSTE03), pp. 20-29, Herzelia, 2003. Also in
the Workshop on Adaptive Distributed Systems (WADiS03), Sorrento, Italy, 2003.

4. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun.
ACM, 17(11):643–644, 1974.

5. S. Dolev, Self-Stabilization, MIT Press, 2000.
6. S. Dolev, Y. Haviv, “Self-Stabilizing Soft Error Resilient Microprocessor” 17th

International Conference on Architecture of Computing Systems, LNCS:2981,
(ARCS04), 2004. Also to appear in IEEE Transaction on computers.

7. S. Dolev, Y. Haviv, M. Sagiv “Self-Stabilization Preserving Compiler” Technical
Report #2005-06, http://www.cs.bgu.ac.il/˜haviv/PHD/sspc-techreport.ps 2005.

8. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming
only read/write atomicity. Distributed Computing, 7(1):3–16, 1993.

9. S. Dolev, R. Kat. “Self-Stabilizing Distributed File Systems”, International Work-
shop on Self-Repairing and Self-Configurable Distributed Systems, (RCDS 2002),
pp. 384-389, To appear in Journal of High Speed Networks, special issue on self-
stabilizing systems.

10. S. Dolev, and J. L. Welch, “Self-Stabilizing Clock Synchronization in the Presence
of Byzantine Faults,”, Journal of the ACM, Vol. 51, No. 5, pp. 780-799, September
2004.

11. S. Dolev, R. Yagel, “Toward Self-Stabilizing Operating Systems” 2nd International
Workshop on Self-Adaptive and Autonomic Computing Systems (SAACS04), pp.
684-688, 2004.

12. A. Fox and D. Patterson. “Self-Repairing Computers”, Scientific American, June,
2003.

13. M. G. Gouda and F. F. Haddix, “The alternator,” WSS, pp. 48-53, 1999.
14. J. O. Kephart, D. M. Chess. “The Vision of Autonomic Computing”, IEEE Com-

puter, 41-50, January, 2003.
15. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Boerger, editor, Speci-

fication and Validation Methods, pages 9–36. Oxford University Press, 1995.
16. C. N. Hadjicostis, Coding Approaches to Fault Tolerance in Combinational and

Dynamic Systems, Kluwer Academic Publishers, 2002.
17. T. Herman, I. Pirwani, “A Composite Stabilizing Data Structure” 5th Workshop

on Self-Stabilizing Systems, LNCS:2194, 167-182 (WSS2001), 2001.
18. M. Kistler, P. Shivakumar, L. Alvisi, D. Burger, and S. Keckler. “Modeling the

effect of technology trends on the soft error rate of combinational logic”. In ICDSN,
volume 72 of LNCS, pages 216–226, 2002.

19. L. Lamport, Time, Clocks, and the Ordering of Events in a Distributed System,
Communications of the ACM, 21(7):558-565, July 1978.

20. N. A. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.
21. T. M. McGuire, M. G. Gouda, The Austin Protocol Compiler, Springer, 2005.
22. R. Perlman, Interconnections: Bridges, Routers, Switches, and Internetworking

Protocols, Addison Wesley, 1999.
23. A. Tanenbaum, Structured Computer Organization; (2nd ed.), Prentice-Hall, Inc.,

1984.

Self-stabilizing Mobile Node
Location Management and Message Routing�

Shlomi Dolev1,��, Limor Lahiani1,��, Nancy Lynch2,� � �, and Tina Nolte2,���

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, 84105, Israel

{dolev, lahiani}@cs.bgu.ac.il
2 MIT CSAIL, Cambridge, MA 02139, USA
{lynch, tnolte}@theory.csail.mit.edu

Abstract. We present simple algorithms for achieving self-stabilizing
location management and routing in mobile ad-hoc networks. While mo-
bile clients may be susceptible to corruption and stopping failures, mobile
networks are often deployed with a reliable GPS oracle, supplying fre-
quent updates of accurate real time and location information to mobile
nodes. Information from a GPS oracle provides an external, shared source
of consistency for mobile nodes, allowing them to label and timestamp
messages, and hence aiding in identification of, and eventual recovery
from, corruption and failures. Our algorithms use a GPS oracle.

Our algorithms also take advantage of the Virtual Stationary Au-
tomata programming abstraction, consisting of mobile clients, virtual
timed machines called virtual stationary automata (VSAs), and a lo-
cal broadcast service connecting VSAs and mobile clients. VSAs are
distributed at known locations over the plane, and emulated in a self-
stabilizing manner by the mobile nodes in the system. They serve as fault-
tolerant building blocks that can interact with mobile clients and each
other, and can simplify implementations of services in mobile networks.

We implement three self-stabilizing, fault-tolerant services, each built
on the prior services: (1) VSA-to-VSA geographic routing, (2) mobile
client location management, and (3) mobile client end-to-end routing. We
use a greedy version of the classical depth-first search algorithm to route
messages between VSAs in different regions. The mobile client location
management service is based on home locations: Each client identifier
hashes to a set of home locations, regions whose VSAs are periodically
updated with the client’s location. VSAs maintain this information and
answer queries for client locations. Finally, the VSA-to-VSA routing and
location management services are used to implement mobile client end-
to-end routing.

Keywords: Virtual infrastructure, location management, home loca-
tions, end-to-end routing, hash functions, self-stabilization, GPS oracle.

� Longer version available as MIT LCS Technical Report MIT-LCS-TR-999.
�� Partially supported by IBM, NSF, Rita Altura Trust Chair in Computer Sciences

and Lynn and William Frankel Center for Computer Sciences.
� � � Supported by DARPA contract F33615-01-C-1896, NSF ITR contract CCR-

0121277, and USAF, AFRL contract FA9550-04-1-0121.

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 96–112, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Self-stabilizing Mobile Node Location Management and Message Routing 97

1 Introduction

A system with no fixed infrastructure in which mobile clients may wander in the
plane and assist each other in forwarding messages is called an ad-hoc network.
The task of designing algorithms for constantly changing networks is difficult.
Highly dynamic networks, however, are becoming increasingly prevalent, and it
is therefore important to develop and use techniques that simplify this task.
In addition, mobile nodes in these networks may suffer from crash failures or
corruption faults, which cause arbitrary changes to their program states. Self-
stabilization [4,5] is the ability to recover from an arbitrarily corrupt state. This
property is important in long-lived, chaotic systems where certain events can
result in unpredictable faults. For example, transient interference may disrupt
wireless communication, violating our assumptions about the broadcast medium.

Mobile networks are often deployed with “reliable” GPS services, supplying
frequent updates of real time and region information to mobile nodes. While the
mobile clients may be susceptible to corruption and stopping failures, the GPS
service may not be. Each of our algorithms utilizes such a reliable GPS oracle.
Information from this oracle provides an external, shared source of consistency
for nodes, and aids in identification of, and recovery from, failures.

In this paper we describe self-stabilizing algorithms that use a reliable GPS
oracle to provide geographic routing, a mobile client location management ser-
vice, and a mobile client end-to-end routing service. Each service is built on the
prior services such that the composition of the services remains self-stabilizing
[11]. To simplify the service implementations, we mask the unpredictability of
mobile nodes by using a self-stabilizing virtual infrastructure, consisting of mo-
bile clients, timing-aware and location-aware machines at fixed locations, called
Virtual Stationary Automata (VSAs) [6,7], that mobile clients can interact with,
and a local broadcast service connecting VSAs and mobile clients.

Self-stabilization and GPS Oracles. Traditionally, self-stabilizing systems
are those systems that can be started from arbitrary configurations and eventu-
ally regain consistency without external help. However, mobile clients often have
access to some reliable external information from a service such as GPS. Each
algorithm in this paper uses an external GPS service (or an equivalent) as a
reliable GPS oracle, providing periodic time and location updates, to base sta-
bilization upon; our algorithms use timestamps and location information to tag
events. In an arbitrary state, recorded events may have corrupted timestamps.
Corrupted timestamps indicating future times can be identified and reset to pre-
defined values; new events receive newer timestamps than any in the arbitrary
initial state. This eventually allows nodes in the system to totally order events.
We use the eventual total order to provide consistency of information and dis-
tinguish between incarnations of activity (such as retransmissions of messages).

Virtual Stationary Automata Programming Layer. In prior work [6,9,8],
we developed a notion of “virtual nodes” for mobile ad hoc networks. A virtual
node is an abstract, relatively well-behaved active node that is implemented

98 S. Dolev et al.

using less well-behaved real physical nodes. The GeoQuorums algorithm [9] pro-
poses storing data at fixed locations; however it only supports atomic objects,
rather than general automata. A more general virtual mobile automaton is sug-
gested in [8]. Finally, the virtual automata presented in [6,7] (and used here) are
more powerful than those of [8], providing timing capabilities.

The static infrastructure we use in this paper includes virtual machines with
an explicit notion of real time, called Virtual Stationary Automata (VSAs), dis-
tributed at known locations [6,7]. Each VSA represents a predetermined geo-
graphic area and has broadcast capabilities similar to those of the mobile nodes,
allowing nearby VSAs and mobile nodes to communicate with one another. Many
algorithms depend significantly on timing, and many mobile nodes have access
to reasonably synchronized clocks. In the VSA layer, VSAs also have access to
virtual clocks, guaranteed to not drift too far from real time. The layer provides
mobile nodes with a fixed virtual infrastructure, reminiscent of better under-
stood wired networks, with which to coordinate. An important property of the
VSA layer implementation described in [6,7] is that it is self-stabilizing. Corrup-
tions at physical nodes can result in inconsistency in the emulation of a VSA.
However, emulations recover after corruptions to correctly emulate a VSA.

Geographic/VSA-to-VSA Routing. A basic service running on the VSA
layer that we describe and use repeatedly is that of VSA-to-VSA (or region-
to-region) routing (VtoVComm), providing a form of geocast. GeoCast algo-
rithms [24,3], GOAFR [19], and algorithms for “routing on a curve” [23] route
messages based on the location of the source and destination, using geography
to delivery messages efficiently. GPSR [17], AFR [20], GOAFR+ [19], polyg-
onal broadcast [10], and the asymptotically optimal algorithm [20] are algo-
rithms based on greedy geographic routing algorithms, forwarding messages to
the neighbor that is geographically closest to the destination. The algorithms
also address “local minimum situations”, where the greedy decision cannot be
made. GPSR, GOAFR+, and AFR achieve, under reasonable network behavior,
a linear order expected cost in the distance between the sender and the receiver.
We implement VSA-to-VSA routing using a persistent greedy depth-first search
(DFS) routing algorithm that runs on top of the VSA layer’s fixed infrastructure.
Our scheme is an application of the classical DFS algorithm in a new setting.

Location Management. Finding the location of a moving client in an ad-
hoc network is difficult, much more so than in cellular networks where a fixed
infrastructure of wired support stations exist (as in [16]), or sensor networks
where some approximation of fixed infrastructure may exist [2]. A location service
is a service that allows any client to discover the location of any other client using
only its identifier. The paradigm for location services that we use here is that
of a home location service: Hosts called home location servers are responsible
for storing and maintaining the location of other hosts in the network [1,14,21].
Several ways to determine home location servers have been suggested.

The locality aware location service in [1] for ad-hoc networks is based on
a hierarchy of lattice points for destination nodes, published with locations of

Self-stabilizing Mobile Node Location Management and Message Routing 99

associated nodes. Lattice points can be queried for the desired location, with
a query traversing a spiral path of lattice nodes increasingly distant from the
source until it reaches the destination. Another way of choosing location servers
is based on quorums. A set of hosts is chosen to be a write quorum for a mobile
client and is updated with the client’s location. Another set is chosen to be a
read quorum and queried for the desired client location. Each write and read
quorum has a nonempty intersection, guaranteeing that if a read quorum is
queried, the results will include the latest location written to a write quorum.
In [14], a uniform quorum system is suggested, based on a virtual backbone of
quorum representatives. Geographic quorums based on focal points are suggested
in [9].

Location servers can also be chosen using a hash table. Some papers [21,15,25]
use geographic locations as a repository for data. These use a hash to associate
each piece of data with a region of the network and store the data at nodes in
the region. This data can be used for routing or other applications. The Grid
location service (GLS) [21] maps client ids to geographic coordinates. A client
Cp’s location is saved by clients closest to the coordinates p hashes to.

The scheme we present is based on hash tables and built on top of the VSA
layer and VSA-to-VSA routing service. VSAs and mobile clients are programmed
to form a self-stabilizing distributed data structure, where VSAs serve as home
locations for clients. Each client’s id hashes to a VSA region, the client’s home
location, whose VSA is responsible for maintaining the location of the client. To
tolerate crashes of a limited number of VSAs, each mobile client id actually maps
to a set of VSA home locations; the hash function returns a sequence of region
ids as the home locations. We can use any hash function that provides a sequence
of regions; one possibility is a permutation hash function, where permutations of
region ids are lexicographically ordered and indexed by client id.

End-to-end Routing. Another important service in mobile networks is
end-to-end routing. Our self-stabilizing implementation of a mobile client
end-to-end communication service is simple, given VSA-to-VSA routing and
the home location service. A client sends a message to another client by using
the home location service to discover the destination client’s region and then
has a local VSA forward the message to the region using the VSA-to-VSA service.

2 Datatypes and System Model

We assume the Virtual Stationary Automata programming abstraction [6], which
includes mobile client nodes and the virtual stationary automata (VSAs) the
mobile nodes emulate, as well as a local broadcast service, V-bcast, between
them (see Figure 1). The network is a fixed, closed, and bounded connected
region R of the 2-D plane. R is partitioned into known connected subregions
called regions, with unique ids from the set of region ids U . We define a neighbor
relation nbrs on ids from U . This relation holds for any two regions u and v where
the supremum distance between points in u and v is bounded by a constant rvirt.

100 S. Dolev et al.

2.1 Client Nodes

For each physical node identifier p from P , we assume a mobile timed I/O
automaton client Cp, whose location in R at any time is referred to as loc(p).
Mobile client speed is bounded by a constant vmax. Clients receive region and
time information from the GPS oracle. A GPSupdate(u, now)p happens every
εsample time at each client, indicating to the client the region u where it is
located and the current time now. Clients accept now as the value of their own
local clock. For simplicity, this local variable progresses at the rate of real time.

.

.

.

ubcast(m)

ubrcv(m) uV

.

.

.

vDout[e]

vV

vbcast(m)

vbrcv(m)

uDout[e]

GPS

q

qbrcv(m)
Cq

pbcast(m)

pbrcv(m)
Cp

bcast(m)

p

q

V−bcast

GPSupdate(u,t)

GPSupdate(v,t)

Fig. 1. VSA layer. VSAs and clients communicate with
V-bcast. VSA outputs may be delayed in Dout.

Each client Cp is
equipped with a lo-
cal broadcast service
V-bcast (see Section
2.3), allowing it to com-
municate with nearby
VSAs and clients with
bcast(m)p and brcv(m)p.
Clients are susceptible
to stopping and cor-
ruption failures. After
a stopping failure, a
client performs no addi-
tional local steps until
restarted. If restarted,
it starts again from an
initial state. If a node
suffers a corruption, it
experiences a nondeter-
ministic change to its
program state. Additional interface actions and local state at the client are
allowed. Local steps take no time.

2.2 Virtual Stationary Automata (VSAs)

A self-stabilizing implementation of VSAs using a GPS oracle and physical mo-
bile nodes can be found in [6,7]. An abstract VSA is a timing-enabled virtual
machine that may be emulated by the mobile nodes in its region in the network.
A VSA for region u, Vu, is a TIOA whose program is a tuple of its action signa-
ture, sigu, valid states, statesu, a start state function mapping clock values to
start states, startu, a discrete transition function, δu, and a set of valid trajecto-
ries [18], τu. The state of Vu is referred to collectively as vstate and is assumed
to include a variable corresponding to real time, vstate.now. To guarantee we
can emulate a VSA using mobile nodes, its interface must be emulatable by
the nodes; a VSA Vu’s external interface is restricted, including only stopping,
corruption, and restart inputs, and the ability to broadcast and receive messages.

Since a VSA is emulated by physical nodes in its region, its failures are
defined in terms of client failures: (1) If no clients are in the region, the VSA

Self-stabilizing Mobile Node Location Management and Message Routing 101

is crashed, (2) If no client failure occurs in an alive VSA’s region over some
interval, the VSA does not suffer a failure during that interval, and (3) A VSA
may suffer a corruption only if a mobile client in its region suffers a corruption;
the self-stabilizing implementation of a VSA in [6,7] guarantees that starting
from an arbitrary configuration, the emulation’s external trace will eventually
look like that of the abstract VSA, starting from a corrupted abstract state.

Due to message delays or node failure, emulations might be behind real time
by up to some time e. It is then a delay-augmented TIOA, an augmentation
of Vu with timing perturbations, represented with buffers Dout[e]u. The buffer
delays messages by a nondeterministic time [0, e], where e is more than V-bcast’s
broadcast delay, d (see Section 2.3).

2.3 Local Broadcast Service (V-bcast)

Communication is in the form of local broadcast V-bcast, with broadcast radius
rvirt and message delay d. It allows communication between VSAs and clients
in the same or neighboring regions. The service allows the broadcasting and
receiving of message m at each port i ∈ P ∪ U through bcast(m)i and brcv(m)i.

We assume V-bcast guarantees two properties: integrity and reliable local
delivery. Integrity guarantees for any brcv(m)i that occurs, a bcast(m)j , j ∈ P∪U
previously occurred. Reliable local delivery roughly guarantees a transmission
will be received by nearby ports: If port i in region u transmits a message, then
every port j in region u or neighboring regions during the entire time interval
starting at transmission and ending d later receives the message by the end of
the interval. (Here, due to GPSupdate lag, a client is said to be “in” region u if
it has just left u but has not yet received a GPSupdate with the change.)

We assume broadcast buffers are large enough that overflows do not occur in
normal operation. In the event of overflow, overflow messages are lost.

3 Problem Specifications

We describe the services we will build over the VSA layer: VSA-to-VSA routing,
a location service, and client-to-client routing, and describe our requirement that
implementations be self-stabilizing.

The following constants (explained/used shortly) are globally known: (1)
f < |U |, a limit on “home location” VSA failures for a client, (2) h, a function
mapping each client id to a sequence of f +1 distinct region ids, (3) ttlV toV > d,
delivery time for the VtoVComm service, (4) ttlHLS ≥ εsample+2d+3e+2ttlV toV ,
response time of the location management service, and (5) ttlhb, a refresh period.
We assume the following client mobility and VSA crash failure conditions:

(1) Each client spends at least εsample time in a region before moving to another,
(2) At any time, each alive client’s current region or a neighboring region has a

non-crashed VSA that remains alive for an additional ttlHLS time,
(3) For any interval of length ttlV toV + e, VSAs alive over the interval are con-

nected via at least one path of non-crashed VSAs over the whole interval,
and

102 S. Dolev et al.

(4) For any interval of length ttlhb + 2ttlV toV + 2e + d, and any alive client q, at
least one VSA from h(q) does not crash during the interval.

3.1 VSA-to-VSA Communication Service (VtoVComm)
Specification

The first service is an inter-VSA routing service, where a VSA from some re-
gion u can send a message m through VtoVsend(v, m)u to a VSA in another
(potentially non-neighboring) region v. Region v’s VSA later receives m through
VtoVrcv(m)v. The service guarantees two properties:

(1) If a VSA at region u performs a VtoVsend(v, m), and region u and v VSAs are
alive over the interval beginning with the send and ending ttlV toV later, then
the VSA at region v performs a VtoVrcv(m) before the end of the interval,
and

(2) If a message is received at some VSA, it was previously sent to that VSA.

3.2 Location Service Specification

A location service answers queries from clients for the locations of other clients.
A client node p can submit a query for a recent region of client node q via a
HLquery(q)p action. If q has been in the system for a sufficient amount of time,
the service responds within bounded time with a recent region location of q,
qreg, through a HLreply(q, qreg)i action. More precisely, the service guarantees
that if a client p performs a HLquery to find an alive client q that has been in
the system longer than εsample + d + ttlV toV + e + ttlHLS time, and p does not
crash or change regions for ttlHLS time, then:

(1) Within ttlHLS time, client p will perform a HLreply with a region for q, and
(2) If p performs a HLreply(q, qreg), then p had requested q’s location and q was

either: (a) alive in region qreg within the last ttlHLS time, or (b) failed for
at most ttlhb + ttlHLS − εsample time.

3.3 Client End-to-End Routing (EtoEComm) Specification

End-to-end routing is an important application for ad-hoc networks. The V-bcast
service provides a local broadcast service where VSAs and clients can communi-
cate with VSAs and clients in neighboring regions. VtoVComm allows arbitrary
VSAs to communicate. End-to-end routing (EtoEComm) allows arbitrary clients
to communicate: a client p sends message m to client q using send(q, m)p, which
is received by q in bounded time via receive(m)q.

If clients p and q do not crash for ttlHLS time, clients do not change regions
for ttlHLS time after a send, and q has been in the system at least ttlHLS +
εsample + d + ttlV toV + e time, then:

(1) If p sends m to q, q receives m within ttlHLS + 2d + 2e + ttlV toV time, and
(2) Any message received by a client was previously sent to the client.

Self-stabilizing Mobile Node Location Management and Message Routing 103

3.4 Self-stabilizing Implementations

We require implementations of the services to be self-stabilizing. A system con-
figuration is safe with respect to a specification and implementation if any ad-
missible execution fragment of the implementation starting from the configura-
tion is an admissible execution fragment of the specification. An implementation
is self-stabilizing if starting from any configuration, an admissible execution of
the implementation eventually reaches a safe configuration. Notice if an imple-
mentation is self-stabilizing, then any long enough execution fragment of the
implementation will eventually have a suffix that looks like the suffix of some
correct execution of the specification, until a corruption occurs.

Each of the above services’ self-stabilizing implementations will be built on
top of self-stabilizing implementations of other services: VtoVComm over the
VSA layer, the location service over the VSA layer and VtoVComm service, and
EtoEComm over the VSA layer, VtoVComm, and location services. Each self-
stabilizing implementation uses lower level services without feedback, so lower
level service executions are not influenced by the upper level services. This allows
us to guarantee that higher level service implementations are still self-stabilizing
through fair composition [11].

Our service implementations, starting from an arbitrary system configura-
tion, stabilize within the following times: VtoVComm: ttlV toV +d time after the
VSA layer stabilizes, the location service: max(ttlHLS , 2e+3ttlV toV + ttlhb +2d)
time after VtoVComm stabilizes, and EtoEComm: ttlpb + 2d+ 2e+ ttlV toV time
after the location service has stabilized.

4 VSA-to-VSA Communication Implementation

The VSA-to-VSA communication (VtoVComm) service allows communication
of messages between any two VSAs through VtoVsend and VtoVrcv actions, as
long as there is a path of non-failed VSAs between them. The VtoVComm service
is built on top of the V-bcast service [6], which supports communication between
two neighboring VSAs.

VSA-to-VSA communication is based on greedy DFS. When a VSA receives
a message for which it is not the destination, it chooses a neighboring VSA that is
on a shortest path to the destination VSA and forwards the message in a forward
message to that neighbor. If the VSA does not receive an indication through a
found message that the message has been delivered to the destination within
some bounded amount of time, it then forwards the message to the neighboring
VSA on the next shortest path to the destination VSA, and so on. This choice
of neighbors is greedy in the sense that the next neighbor chosen to receive
the forwarded message is the one on a shortest path to the destination VSA,
excluding the neighbors associated with previous tries. The greedy DFS can turn
into a flood in pathological situations in which the destination is that last VSA
reached. Self-stabilization of the algorithm is ensured by the use of a real time
timestamp to identify the version of the DFS. Too old versions are eliminated

104 S. Dolev et al.

from the system and new versions are handled as completely new attempts to
complete a greedy DFS towards the destination.

We present a simple greedy DFS that gradually expands the search until all
paths are checked. This algorithm will find a path to the destination if such a
path exists throughout the DFS execution. We also have a modification of the
algorithm to produce a persistent version in which each VSA repeatedly tries
to forward messages along previously unsuccessful paths to take advantage of
recoveries of VSAs that may result in a viable path [13].

4.1 Detailed Code Description

The following code description refers to the code for VSA V V toV
u in Figure 2.

The main state variable DFStable keeps track of information for messages that
are still waiting to be delivered. For each such unique message, the table stores

Signature:
2 Input VtoVsend(d, m)u, d ∈ U, m arbitrary

Input brcv(m)u, m ∈ ({found}× Msg)
4 ∪ ({forward} × Msg × U × {u})

Output bcast(m)u, m arbitrary
6 Output VtoVrcv(m)u, m arbitrary

Internal DFStimeout(msg)u, msg ∈ Msg
8 Internal DFSclean(msg)u, msg ∈ Msg

Msg = M× U× U× R,
10 of the form 〈m, v2vs, v2vd, ts〉

12 State:
analog now ∈ R, the current real time

14 bcastq,VtoVrcvq, message queues, initially ∅
DFStable, a table indexed on Msg tuples,

16 with entries in (nbrs(u) × 2nbrs(u) × R),
initially ∅

18 curNbr ∈ U, initially ⊥

20 Trajectories:
satisfies

22 d(now) = 1
constant bcastq, VtoVrcvq, DFStable,

24 curNbr
stops when

26 Any precondition is satisfied.

28 Actions:
Output bcast(m)u

30 Precondition:
m ∈ bcastq

32 Effect:
bcastq ← bcastq \ {m}

34

Input VtoVsend(d, m)u

36 Effect:
if u = d then

38 VtoVrcvq ← VtoVrcvq ∪ {m}
else DFStable(〈m, u, d, now〉)

40 ← 〈u, nbrs(u), now〉

42Internal DFStimeout(msg)u

Precondition:
44DFStable(msg) = 〈∗, ∗, to〉

to /∈ (now, now + δ(u, msg.v2vd)]
46Effect:

if (DFStable(msg)= 〈i,NS,to〉∧NS 	= ∅) then
48curNbr ← NxtNbr(NS, i, u, msg.v2vd)

DFStable(msg)
50← 〈i,NS\{curNbr},now+δ(u,msg.v2vd)〉

bcastq← bcastq ∪ {〈forward,msg,u,curNbr〉}
52else DFStable(msg) ← null

54Input brcv(〈forward, msg, isrc, u〉)u

Effect:
56if msg.ts ∈ [now -ttlV toV , now] then

if u = msg.v2vd then
58bcastq ← bcastq ∪ {〈found, msg〉}

VtoVrcvq ← VtoVrcvq ∪ {msg.m}
60else if DFStable(msg) = null then

DFStable(msg)
62← 〈isrc, nbrs(u)\{isrc}, now〉

64Input brcv(〈found, msg〉)u

Effect:
66if DFStable(msg) 	= null then

DFStable(msg) ← null
68if u 	= msg.v2vs then

bcastq ← bcastq ∪ {〈found, msg〉}
70

Output VtoVrcv(m)u

72Precondition:
m ∈ VtoVrcvq

74Effect:
VtoVrcvq ← VtoVRcvq \ {m}

76

Internal DFSclean(msg)u

78Precondition:
DFStable(msg) 	= null

80msg.ts /∈ [now -ttlV toV , now]
Effect:

82DFStable(msg) ← null

Fig. 2. Greedy DFS algorithm at V V toV
u for region u

Self-stabilizing Mobile Node Location Management and Message Routing 105

the intermediate source of the message, the set of VSA neighbors that have yet
to have the message forwarded to them, and a timeout for the neighbor currently
being tried for forwarding the message.

A source VSA V V toV
u for region u sends a message m to a destination VSA

in region d using VtoVsend(d, m)u (line 35). If u = d then V V toV
u receives m

through VtoVrcv(m)u (lines 37-38). Otherwise the destination VSA is another
VSA and VSA V V toV

u sets the DFStable mapping of an augmented version of
the message, 〈m, u, d, now〉, to 〈u, nbrs(u), now〉. This enables the start of a new
DFS execution to forward the message to its destination (line 39-40).

Whenever the forwarding of a message to a neighbor in DFStable times out,
it triggers forwarding to the next neighbor in the DFS, if possible. If the message
hasn’t yet been forwarded to all of the relevant neighbors, then the next neighbor
closest to the destination VSA that has not yet had a message forwarded to it,
curNbr, is selected and the message tuple msg is then forwarded in a forward
message to it using the V-bcast service (lines 42-52). The timeout for this attempt
at forwarding is set to δ(curNbr, msg.v2vd) later, where δ : {U} × {U} → N is
a bound on the time required for a message to arrive from x to y. If the message
has already been forwarded to all the relevant neighbors, then DFStable(msg)
is set to null, indicating that nothing more can be done.

If a tuple msg whose destination is u is received in a forward message from
isrc, then V V toV

u broadcasts a 〈found, msg〉 message via the V-bcast service and
VtoVrcv’s the message msg.m. The found message notifies neighbors still partici-
pating in the DFS for msg that it has reached its destination. No forwarding is re-
quired (lines 56-59). Otherwise, if msg is not destined for V V toV

u and V V toV
u does

not already have an entry in DFStable for msg, then the message must be for-
warded to its destination. DFStable(msg) is set to 〈isrc, nbrs(u)\{isrc}, now〉
(lines 61-62), storing the intermediate source, initializing the set of neighbors
that have yet to have the message forwarded to them, and setting a timeout to
now. Setting the timeout to now immediately enables the DFStimeout action for
msg, triggering the forwarding of msg to one of V V toV

u ’s neighbors.
When a found message is received for a message tuple msg that is mapped

by DFStable, the entry in DFStable is erased, preventing additional forwarding
(line 67). If u �= msg.v2vs then VSA V V toV

u broadcasts a found message via the
V-bcast service (lines 68-69), notifying neighbors that are still participating for
msg that it has been delivered. Clearly, if u = msg.v2vs, then no found message
is required and no further action needs to be taken.

4.2 Correctness

Let the source VSA be V V toV
s , the destination VSA be V V toV

d , the message sent
be m, and a DFS execution exe from V V toV

s to V V toV
d be as defined above.

Any non-negative wait time is sufficient for correctness. However, a wait time
dependent on hop count between regions will be the most message-efficient. If
no corruptions occur and the status (failed or non-failed) of every VSA doesn’t
change during exe, then the following holds:

106 S. Dolev et al.

Lemma 1. If V V toV
s performs a VtoVsend(d, m) at time t, and there exists a

path of non-failed VSAs between V V toV
s and V V toV

d from t to time t + ttlV toV ,
then V V toV

d performs a VtoVrcv(m) in the interval [t, t + ttlV toV], for ttlV toV ≥
[e + d + (maxu,v∈Uδ(u, v) · maxu∈U |nbrs(u)| − 1)] · (|U | − 1).

Lemma 2. The number of times a message tuple is re-broadcast is bounded.

Lemma 3. Once corruptions stop and the VSA layer has stabilized, it takes up
to d + ttlV toV time for VtoVComm to stabilize.

5 Home Location Service (HLS) Implementation

The location service allows a client to determine a recent region of another
alive client. In our implementation, called the Home Location Service (HLS), we
accomplish this using home locations. Recall that the home locations of a client
node p are f + 1 regions whose VSAs are occasionally updated with p’s region.
The home locations are calculated with a hash function h, mapping a client’s id
to a list of VSA regions, and is known to all VSAs. These home location VSAs
can then be queried by other VSAs to determine a recent region of p.

The HLS implementation consists of two parts: a client-side portion and a
VSA-side portion. CHL

p is a subautomaton of client p that interacts with VSAs
to provide HLS. It notifies local VSAs of its region. It also handles HLquery(q)p

requests, by broadcasting the query to local VSAs. It translates responses from
the VSAs into HLreply outputs. For the VSA-side, V HL

u and V HL
v are home

location VSAs corresponding to regions u and v of the network; they are sub-
automata of VSAs Vu and Vv. V HL

u takes a request from a local client for client
node q’s region, calculates q’s home locations using the hash function, and then
sends location queries to the home locations using VtoVComm. Home locations
respond with region information they have for q, which is then provided by V HL

u

to the requesting client. V HL
u also is responsible both for informing the home

locations of each client p located in its region or neighboring regions of p’s region,
and answering queries for the regions of clients for which it is a home location.

Time and region information from the GPS oracle is used throughout the
HLS algorithm, by clients and VSAs, to timestamp and label information and
messages. This information is used to guarantee timeliness of replies from the
HLS service, and to stabilize the service after faults. Timestamps are used to
determine if information is too old or too new, while region information allows
clients and VSAs to know which other clients and VSAs to interact with.

5.1 HLS Client Actions

Clients receive GPSupdates every εsample time from the GPS automaton, making
them aware of their current region and the time. If a client’s region has changed,
the client immediately sends a heartbeat message with its id, current time and
region information. The client periodically reminds its current and neighboring
region VSAs of its region by broadcasting additional heartbeat messages every
ttlhb time, where ttlhb is a known constant.

Self-stabilizing Mobile Node Location Management and Message Routing 107

CHL
p also handles the HLquery(q) inputs it receives. This request for q’s loca-

tion is stored in a queryq table and, once the client knows its own region, trans-
lated into a 〈clocQuery, q〉 message that is broadcast, together with the VSA
region, to local regions’ VSAs. If CHL

p eventually receives a 〈clocReply, q, qreg〉
message from its current or neighboring region’s VSA for a client q in queryq,
indicating that node q was in region qreg, it clears the entry for q in queryq, and
outputs a HLreply(q, qreg) of the information. If the request goes unanswered for
more than ttlHLS − εsample time, then the request has failed and is removed.

5.2 HLS VSA Actions

The code for automaton V HL
u appears in Figure 3. The VSA knows of local

clients through heartbeat messages. If a VSA hears a heartbeat from a client p
claiming to be in its region or a neighboring region, the VSA sends a locUpdate
message for p, with p’s heartbeat timestamp and region, through VtoVComm
to the VSAs at home locations of client p (lines 40-44); home locations are
computed using a known hash function h from P × {1, · · · , f + 1} to U .

When a VSA receives one of these locUpdate messages for a client p, it stores
both the region indicated in the message as p’s current region and the attached
heartbeat timestamp in its loc table (lines 46-49). This location information
for p is refreshed each time the VSA receives a locUpdate for client p with a
newer heartbeat timestamp. Since a client sends a heartbeat message every ttlhb

time, which can take up to d + e time to arrive at and trigger a VSA to send
a locUpdate message through VtoVComm, which can take ttlV toV time to be
delivered at a home location, an entry for client p is erased if its timestamp is
older than ttlhb + d + e + ttlV toV (lines 51-55).

The other responsibility of the VSA is to receive and respond to local client
requests for location information on other clients. A client p in a VSA’s region
or a neighboring region v can send a query for q’s current location to the VSA.
This is done via a mobile node’s broadcast of a 〈〈clocQuery, q〉, v〉 message. When
the VSA at region u receives this query, if no outstanding query for q exists, it
notes the request for q in lquery(q), and sends a vlocQuery message to q’s f + 1
home locations, querying about q’s location (lines 57-64). Any home location
that receives such a message and has an entry for q’s region responds with a
vlocReply to the querying VSA with the region (lines 66-70).

If the querying VSA at u receives a vlocReply in response to an outstand-
ing location request for a client q, it stores the attached region information in
lquery(q) (lines 72-75), broadcasts a clocReply message with q and its region
to local clients, and erases the entry for lquery(q) (lines 77-81). If, however,
2ttlV toV + 2e time passes since a request for q’s region was received by a local
client and there is no entry for q’s region, lquery(q) is just erased (lines 83-87).

5.3 Correctness

We make the system assumptions described in Section 3. For the following two
lemmas and theorem, assume the system starts in a safe configuration, and no
corruptions occur.

108 S. Dolev et al.

Constants:
2 h, a hash function from P × {1, · · · , f + 1} to

U such that for p ∈ P , x, y ∈ {1, · · · , f + 1},
4 if x 	= y, then h(p, x) 	= h(p, y)

6 Signature:
Input brcv(〈m, v〉)u, m ∈ ({heartbeat}× R× P)

8 ∪ ({clocQuery} × P), v ∈ U
Input VtoVrcv(〈v, m〉)u, v ∈ U,

10 m ∈ ({locUpdate} × P × R)∪
({vlocQuery}× P)∪ ({vlocReply}× P× U)

12 Output bcast(〈〈clocReply, q, qreg〉, u〉)u,
q ∈ P, qreg ∈ U

14 Output VtoVsend(v, m)u, v ∈ U
Internal updateHL(q)u, q ∈ P

16 Internal cleanLoc(q)u, q ∈ P
Internal cleanLquery(q)u, q ∈ P

18

State:
20 loc, lquery, tables indexed on process ids with

entries from U × R
≥0, of the form 〈reg, ts〉

22 vtovq, a queue of tuples from U × msg
(Above all initially empty)

24 analog now ∈ R
≥0, the current real time

26 Trajectories:
satisfies

28 d(now) = 1
constant loc, lquery, vtovq

30 stops when
Any precondition is satisfied.

32

Actions:
34 Output VtoVsend(v, m)u

Precondition:
36 〈v, m〉 ∈ vtovq

Effect:
38 vtovq ← vtovq \ {〈v, m〉}

40 Input brcv(〈〈heartbeat, t, p〉, v〉)u

Effect:
42 if (v∈ nbrs(u)∪ {u}∧now-d≤ t≤ now) then

for i = 1 to f+1
44 vtovq← vtovq∪ {〈h(q,i),〈v,〈locUpdate,q,t〉〉〉}

46Input VtoVrcv(〈v, 〈locUpdate, q, t〉〉)u

Effect:
48if loc(q).ts < t ≤ now then

loc(q) ← 〈v, t〉
50

Internal cleanLoc(q)u

52Precondition:
loc(q).ts /∈ [now-ttlhb-d-e-ttlV toV , now]

54Effect:
loc(q) ← null

56

Input brcv(〈〈clocQuery, q〉, v〉)u

58Effect:
if ([lquery(q) = null ∨ lquery(q).ts< now]

60∧ v ∈ nbrs(u)∪ {u}) then
lquery(q) ← 〈⊥, now + 2ttlV toV + 2e〉

62for i = 1 to f+1
vtovq ← vtovq ∪

64{〈h(q,i), 〈u, 〈vlocQuery, q〉〉〉}

66Input VtoVrcv(〈v, 〈vlocQuery, q〉〉)u

Effect:
68if loc(q) 	= null then

vtovq ← vtovq ∪
70{〈v, 〈u, 〈vlocReply, q, loc(q).reg〉〉〉}

72Input VtoVrcv(〈v, 〈vlocReply, q, qreg〉〉)u

Effect:
74if lquery(q) 	= null then

lquery(q).reg ← qreg
76

Output bcast(〈〈clocReply, q, qreg〉,u〉)u

78Precondition:
qreg = lquery(q).reg 	= ⊥

80Effect:
lquery(q) ← null

82

Internal cleanLquery(q)u

84Precondition:
lquery(q).ts/∈ [now, now + 2ttlV toV + 2e]

86Effect:
lquery(q) ← null

Fig. 3. HLS’s V HL
u automaton with parameters ttlV toV and ttlhb

Lemma 4. For any VSA u, if there is a request for q’s region in lquery, it was
submitted through a HLquery(q) within the last εsample + d + 2ttlV toV + 2e time.

Lemma 5. Starting εsample+d+e+ttlV toV time after client p enters the system
and until p fails, for each interval of length ttlV toV + e, all but f of p’s home
locations will have a non-null loc(p) entry for the entire interval. If client p is
alive and there is some VSA u such that loc(p) is not null, p was alive and
located in loc(p).reg within the last εsample + d + e + ttlV toV time.

Theorem 1. Every client p searching for a non-failed client q that has been in
the system longer than ttlHLS + εsample + d + ttlV toV + e time will perform a
HLreply(q, qreg) within time ttlHLS, such that q was located in region qreg no

Self-stabilizing Mobile Node Location Management and Message Routing 109

more than ttlHLS time ago. No reply will occur if q has been failed for more than
ttlhb + ttlHLS − εsample time. Any reply is in response to a query.

Proof sketch: By the prior lemma, once client q has been in the system for
εsample + d + e + ttlV toV time, any queries of its home locations will succeed in
producing a result. However, a new HLquery request “piggybacks” on any prior
unexpired HLquery requests. Since one of these requests could have been initiated
just before the client q’s home locations are updated, we can only guarantee a
response will be received for a new request if any outstanding requests will be
answered. If the client has been in the system for this total ttlHLS+d+e+ttlV toV

time after receiving its first GPSupdate, then any response to a query can take
as much as ttlHLS time: εsample time for the querying client to receive its first
GPSupdate, d time for the query to be transmitted and received by a local VSA,
e+ttlV toV for the local VSA to query a home location, e+ttlV toV for the response
to arrive at a local VSA, e time for the local VSA to transmit the response to its
requesting clients, and d time for the transmission to be received and translated
into HLreplys at clients. By the prior lemma, we know that information can only
be out of date by εsample + ttlV toV + e + d time when a home location responds
to a query by another VSA. The response can take e + ttlV toV time to arrive
at the querying VSA, followed by e + d time for the querying VSA to get the
information to the clients that prompted the query. The oldest the information
could be is the total.

For the second statement, note that a failed client will not send a heartbeat
message. Since loc(p) entries are cleared once ttlhb + d + e + ttlV toV time has
passed since the heartbeat message upon which it was based was broadcast, and
the information from the entry can only take as much as e + ttlV toV time to
reach a querying VSA and e + d time to reach any querying clients, the total is
the maximum time a HLreply can occur after the client fails.

For the third statement, a query expires after ttlHLS time. Hence, any re-
sponse generated must be for a query that is not older. ��

Theorem 2. Starting from an arbitrary configuration, after VtoVComm has
stabilized, it takes max(ttlHLS , 2e+3ttlV toV +ttlhb+2d) time for HLS to stabilize.

Proof sketch: Once lower levels have stabilized, most client state is made locally
consistent within εsample time, the time for a GPSupdate. This action resets
most variables if the region is updated. The remaining state is made consistent
instantaneously with local correction, except for the heartbeat timer and queryq
variables. The heartbeat timer can affect operations for at most ttlhb time. The
queryq variable can affect operations for ttlHLS time, when it would be deleted.

For VSAs, there are two variables that are not instantaneously corrected: loc
and lquery. The loc variable will be consistent within time e+2ttlV toV +ttlhb+d.
At worst, there could be a corrupted message that arrives at a VSA after ttlV toV

time, adding a bad entry that takes e + ttlV toV + ttlhb + d time to expire. If the
client referred to is in the system, it might not be until the next update after the
timestamp of the corrupted message (which could have been delivered as late as

110 S. Dolev et al.

ttlV toV after corruptions stopped) arrives for the information to be cleaned up.
This time is exactly what the offset term for loc timeouts describes. Hence, the
variable might not be cleaned until ttlV toV plus that offset term.

However, there may be responses based on this bad loc table information
that were sent right at e + 2ttlV toV + ttlhb + d, and that take e + ttlV toV to
arrive at the VSA. The resulting transmission (taking d time to complete) to
local clients is then incorrect. However, those incorrect transmissions cease after
the total time 2e + 3ttlV toV + ttlhb + 2d elapses.

The lquery variable is cleaned up within ttlHLS time. An entry in lquery
only has a total of 2ttlV toV + 2e time in the data structure. It could be the case
that a spurious request was transmitted in the beginning, which adds d time. If a
region response is received it results in immediate correction of the state through
erasure. Hence, the time required to be consistent is the time that it takes for a
query to be accounted for. The maximum of ttlHLS and 2e+3ttlV toV + ttlhb +2d
is the maximum stabilization time. ��

6 Client End-to-End Routing (EtoEComm)
Implementation

Our implementation of the end-to-end routing service, EtoEComm, uses the
location service to discover a recent region location of a destination client node
and then uses this location in conjunction with VtoVComm to deliver messages.
As in the implementation of the Home Location Service, there are two parts to
the implementation: the client-side portion and the VSA-side portion.

A message m is sent to another client q via send(q, m)p. This input to client-
side CE2E

p results in the forwarding of the message to p’s current region u’s
and neighboring VSAs through a local broadcast of the message with the the
destination q and q’s location, if q’s location is known. If a recent region for q is
not known, CE2E

p queries HLS to determine one. A timeout for response to the
location request is set for ttlHLS later. Once a response is received from HLS in
the form of HLreply(q, qreg)p, indicating q was in region qreg, the location of q
is stored and kept for ttlpb time. For each message waiting to be sent to q, the
message, labeled with q and qreg, is forwarded to p’s current and neighboring
regions’ VSAs through a local broadcast, as before.

Messages for client p from other clients are received from p’s current region
or a neighboring region v’s VSA through a local broadcast from a local VSA.
The message is subsequently delivered through the output receive(m)p.

The VSA V E2E
u portion is very simple. A client may send it information

to be transmitted to other VSAs, which it forwards through VtoVComm, or
another VSA may send it information to be delivered at a client in its own or a
neighboring region, which it forwards through V-bcast.

The receipt of a locally broadcast message m from a client p in region u or a
neighboring region to q at region qreg results in the subsequent forwarding of the
message to the virtual automata at regions calcregs(qreg) and their neighboring
regions, via the virtual automata VtoVComm service. The set of VSA regions

Self-stabilizing Mobile Node Location Management and Message Routing 111

calcregs(qreg) describes the regions that q may occupy by the time the message
is delivered to it. The receipt, via VtoVComm of message m intended for client
p in region u or a neighboring region results in the forwarding of the message to
p through a local broadcast.

7 Concluding Remarks

We described how both the GPS oracle and the VSA layer could help implement
self-stabilizing geocast routing, location management, and end-to-end routing
services. The self-stabilizing VSA layer provides a virtual fixed infrastructure
useful for solving a variety of problems. It acts as a fault-tolerant, self-stabilizing
building block for services, allowing applications to be built for mobile networks
as though base stations existed for mobile clients to interact with.

The GPS oracle’s frequently refreshed and reliable timing and location in-
formation made providing self-stabilization easier. The paradigm of an exter-
nal service providing reliable information that can be used in a self-stabilizing
service implementation is an especially important and relevant one in mobile
networks. Mobile networks demonstrate many properties that naturally require
self-stabilizing implementations, such as a need for self-configuration, or the pos-
sibility of unpredictable kinds of failures, but also often have access to reliable
external knowledge that can act as a source of shared consistency in the net-
work; here, accurate region knowledge allowed nodes to determine who they
should be communicating with (current region and neighboring region nodes),
and time information allowed them to order messages and assess timeliness of
information.

References

1. Abraham, I., Dolev, D., and Malkhi, D., “LLS: A Locality Aware Location Service
for Mobile Ad Hoc Networks”, Proceedings of the DIALM-POMC Joint Workshop
on Foundations of Mobile Computing (DIALM-POMC), pp. 75-84, 2004.

2. Arora, A., Demirbas, M., Lynch, N., and Nolte, T., “A Hierarchy-based Fault-
local Stabilizing Algorithm for Tracking in Sensor Networks”, 8th International
Conference on Principles of Distributed Systems (OPODIS), pp. 207-217, 2004.

3. Camp, T., Liu, Y., “An adaptive mesh-based protocol for geocast routing”, Journal
of Parallel and Distributed Computing: Special Issue on Mobile Ad-hoc Networking
and Computing, pp. 196–213, 2002.

4. Dijkstra, E.W., “Self stabilizing systems in spite of distributed control”, Commu-
nications of the ACM, pp. 643-644, 1974.

5. Dolev, S., Self-Stabilization, MIT Press, 2000.
6. Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., and Nolte, T., “Timed Virtual Sta-

tionary Automata for Mobile Networks”, Technical Report MIT-LCS-TR-979a,
MIT CSAIL, Cambridge, MA 02139, 2005.

7. Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., and Nolte, T., “Brief Announcement:
Virtual Stationary Automata for Mobile Networks”, Proceedings of the 24th Annual
ACM Symposium on Principles of Distributed Computing (PODC), pp. 323, 2005.

112 S. Dolev et al.

8. Dolev, S., Gilbert, S., Lynch, N., Schiller, E., Shvartsman, A., and Welch, J., “Vir-
tual Mobile Nodes for Mobile Ad Hoc Networks”, International Conference on
Principles of Distributed Computing (DISC), pp. 230-244, 2004.

9. Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Welch, J., “GeoQuorums: Im-
plementing Atomic Memory in Ad Hoc Networks”, 17th International Conference
on Principles of Distributed Computing (DISC), Springer-Verlag LNCS:2848, pp.
306-320, 2003. Also to appear in Distributed Computing.

10. Dolev, S., Herman, T., and Lahiani, L., “Polygonal Broadcast, Secret Maturity
and the Firing Sensors”, Third International Conference on Fun with Algorithms
(FUN), pp. 41-52, May 2004. Also to appear in Ad Hoc Networks Journal, Elseiver.

11. Dolev, S., Israeli, A., and Moran, S., “Self-Stabilization of Dynamic Systems As-
suming only Read/Write Atomicity”, Proceeding of the ACM Symposium on the
Principles of Distributed Computing (PODC 90), pp. 103-117. Also in Distributed
Computing 7(1): 3-16 (1993).

12. Dolev, S., Pradhan, D.K., and Welch, J.L., “Modified Tree Structure for Location
Management in Mobile Environments”, Computer Communications, Special issue
on mobile computing, Vol. 19, No. 4, pp. 335-345, April 1996. Also INFOCOM
1995, Vol. 2, pp. 530-537, 1995.

13. Dolev, S. and Welch, J.L.,“Crash Resilient Communication in Dynamic Networks”,
IEEE Transactions on Computers, Vol. 46, No. 1, pp.14-26, January 1997.

14. Haas, Z.J. and Liang, B., “Ad Hoc Mobility Management With Uniform Quorum
Systems”, IEEE/ACM Trans. on Networking, Vol. 7, No. 2, pp. 228-240, April 1999.

15. Hubaux,J.P.,LeBoudec,J.Y.,Giordano,S.,andHamdi,M.,“TheTerminodesProject:
Towards Mobile Ad-Hoc WAN”, Proceedings of MOMUC, pp. 124-128, 1999.

16. Imielinski, T., and Badrinath, B.R., “Mobile wireless computing: challenges in data
management”, Communications of the ACM, Vol. 37, Issue 10, pp. 18-28, 1994.

17. Karp, B. and Kung, H. T., “GPSR: Greedy Perimeter Stateless Routing for Wire-
less Networks”, Proceedings of the 6th Annual International Conference on Mobile
Computing and Networking, pp. 243-254, SCM Press, 2000.

18. Kaynar, D., Lynch, N., Segala, R., and Vaandrager, F., “The Theory of Timed I/O
Automata”, Technical Report MIT-LCS-TR-917a, MIT LCS, 2004.

19. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A., “Geometric Ad-Hoc Routing:
Of Theory and Practice”, Proceedings of the 22nd Annual ACM Symposium on
Principles of Distributed Computing (PODC), pp. 63-72, 2003.

20. Kuhn, F., Wattenhofer, R., and Zollinger, A., “Asymptotically Optimal Geometric
Mobile Ad-Hoc routing”, Proceedings of the 6th International Workshop on Dis-
crete Algorithms and Methods for Mobile Computing and Communications (Dial-
M), pp. 24-33, ACM Press, 2002.

21. Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.R., and Morris, R., “A Scalable
Location Service for Geographic Ad Hoc Routing”, Proceedings of Mobicom, pp.
120-130, 2000.

22. Malkhi, D., Reiter, M., and Wright, R., “Probabilistic Quorum Systems”, Proceed-
ing of the 16th Annual ACM Symposium on the Principles of Distributed Comput-
ing (PODC 97), pp. 267-273, Santa Barbara, CA, August 1997.

23. Nath, B., Niculescu, D., “Routing on a curve”, ACM SIGCOMM Computer Com-
munication Review, pp. 155-160, 2003.

24. Navas, J.C., Imielinski, T., “Geocast- geographic addressing and routing”, Pro-
ceedings of the 3rd MobiCom, pp. 66-76, 1997.

25. Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R., and Shenker, S.,
“GHT:AGeographicHashTable forData-CentricStorage”,FirstACMInternational
Workshop on Wireless Sensor Networks and Applications, pp. 78-87, 2002.

Memory Management for
Self-stabilizing Operating Systems�

(Extended Abstract)

Shlomi Dolev1 and Reuven Yagel1,2

1 Department of Computer Science,
Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel

{dolev, yagel}@cs.bgu.ac.il
2 Rafael 3M, POB 2205, Haifa, Israel

Abstract. This work presents several approaches for designing the
memory management component of self-stabilizing operating systems.
We state the requirements which a memory manager should satisfy. One
requirement is eventual memory hierarchy consistency among different
copies of data residing in different (level of) memory devices e.g., ram
and disk. Another requirement is stabilization preserving where the mem-
ory manager ensures that every process that is proven to stabilize inde-
pendently, also stabilizes under the (self-stabilizing scheduler and the)
memory manager operation. Three memory managers that satisfy the
above requirements are presented. The first allocates the entire physi-
cal memory to a single process in every given point of time, the second
uses fixed partition of the memory among processes, and the last uses
memory leases for dynamic memory allocations.

1 Introduction

This work presents new directions for building self-stabilizing memory manage-
ment as a component of a self-stabilizing operating system kernel. A system is
self-stabilizing [7,8] if it can be started in any possible state and converge to a
desired behavior. A state of a system is an assignment of arbitrary values to
the systems variables. The usefulness of such a system in critical and remote
systems cannot be over estimated. Entire years of work maybe lost when the op-
erating system of an expensive complicated device e.g., a spaceship, may reach
an arbitrary state due to say, soft errors (e.g., [14]), and be lost forever.

An operating system kernel usually contains the basic mechanisms for man-
aging the hardware resources. The classical Von-Neumann machine includes a
processor, a memory device and external i/o devices. In this architecture mem-
ory management is an important task of the kernel of the operating system. Our
memory management uses the primitive building blocks from [10] where simple
self-stabilizing process schedulers are presented.
� Partially supported by Rafael, Microsoft, IBM, NSF, Intel, Deutsche Telekom, Rita

Altura Trust Chair in Computer Sciences and Lynn and William Frankel Center for
Computer Sciences.

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 113–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

114 S. Dolev and R. Yagel

Management of memory influenced the development of computer architec-
ture and operating systems [2]. Various memory organization schemes and ap-
propriate requirements have been suggested during the years. Here we add two
important requirements called the eventual memory hierarchy consistency re-
quirement and the stabilization preserving requirement. Since memory hierar-
chies and caching are key ideas in memory management, the memory manger
must eventually provide consistency of the various memory levels. Secondly, once
stabilization is proven for a process, the fact that process and scope switching
occurs and memory is actually shared with other processes, will not damage the
stabilization property of the process. These requirements are an addition to the
usual efficiency concerns which operating systems must address.

We present three basic design solutions that, roughly speaking, follow the
evolution of memory management techniques. The first approach allocates the
whole available memory to the running process, thus ensuring exclusion of mem-
ory access. This method is simple but not efficient, since each process switch
requires expensive disk operations. The second solution partitions the memory
among several running processes, exclusive access is achieved through segmen-
tation and stabilization of the segment partitioning algorithm. Both solutions
constrain program referencing to addresses in the physical memory only (or
even in the partition size) and allow only static use of memory. Then we present
lease based dynamic schemes, where the application must renew memory leases
in order to ensure the correct operation of a self-stabilizing garbage collector.

Demonstration implementations (which appear in [11]) using the Intel Pen-
tium processor architecture [13] were composed. The implementations are writ-
ten in assembly language, and are directly assembled into the processor’s opcode
(in our experiments we have used the nasm open-source assembler [16]). The
methodology we used for building such critical systems is to examine, with extra
care, every instruction. This is achieved by writing the code directly according to
the machine semantics (not relying on current compilers to preserve our require-
ments), together with line by line examination. This style is sometimes tedious,
but is essential to demonstrate the way one should ensure the correctness of a
program from any arbitrary initial state. Such a method is specially important
when dealing with such a basic component as an operating system kernel. Higher
level components and applications can then be composed in ways discussed in [4].
The Intel Pentium processor contains various mechanisms which support robust
design of memory management like segmentation, paging and ring protection.
However, the complexity of the processor (partially due to previous processors
compatibility requirements) carries a risk of the entering into undesirable states,
thereby causing undesirable execution. Our proof and prototype show that it
is possible to design a self-stabilizing memory manager that preserves the sta-
bilization of the running processes which is an important building block of an
infrastructure for industrial self-stabilizing systems.

Previous Work: Extensive theoretical research has been done toward self-
stabilizing systems [7,8,21] and recovery-oriented/autonomic-computing/self-
repair, e.g., [12,17,22]. Fault tolerance properties of operating systems (e.g., [19]),

Memory Management for Self-stabilizing Operating Systems 115

including the memory management layer were extensively studied as well. For
example in [1] important operating system memory regions are copied into a
special area for fast recovery. The design of the Multics operating system pio-
neered issues of data protection and sharing, see [6] and [18]. However, none of
the above suggest a design for an operating system, and particularly memory
management that can automatically recover from an arbitrary state (that may
be reached after a combination of unexpected faults).

Paper Organization: In the next section we define the system settings and
requirements. The three solutions: total swapping, fixed partition and dynamic
memory allocation, are presented in Section 3, Section 4 and Section 5, respec-
tively. Concluding remarks appear in Section 6.

2 System Settings, Assumptions and Requirements

We start with a brief set of definitions related to states and state tran-
sitions (see [9,10] for more details). The system is modeled by a tuple
〈processor, memory, i/o connectors〉. The processor (or microprocessor) is de-
fined by an operation manual, e.g., Pentium [13]. The processor state is defined
by the contents of its internal memory (registers).

The registers includes a program counter (pc) register and a processor status
word (psw) register, which determines the current mode of operation. In partic-
ular, the psw contains a bit indicating whether interrupts are enabled.
A clock tick triggers the microprocessor to execute a processor step psj =
(s, i, s′, o), where the inputs i and the current state of the processor s are used
to define the next processor state s′ and the outputs o. The inputs and outputs
of the processor are the values of its i/o connectors whenever a clock tick oc-
curs. The processor uses the i/o connectors values to communicate with other
devices, mainly with the memory via its data lines. In fact the processor can
be viewed as a transition function defined by, e.g., [13]. A processor execution
PE = ps1, ps2, · · · is a sequence of processor steps such that for every two suc-
cessive steps in PE, psj = (s, i, s′, o) and psj+1 = (s, i, s′, o) it holds that s′ = s.

The interrupt connector which is connected to external i/o devices, is used
to signal the processor for (urgent) service requests. The nmi (Non-Maskable
Interrupt) connector role is similar to the interrupt connector, except that the
nmi request is not masked by the interrupt flag. In the Pentium, whenever one
nmi is handled, other nmi’s are ignored until an iret operation is executed.

The memory is composed of various devices (Figure 1 presents some common
memory hierarchy). Here we consider main memory and secondary storage. The
main memory is composed of rom and ram components. Read-only parts are
assumed non-volatile. The secondary storage is also organized as a combination
of read-only parts, such as cd-rom and other disks. The read-only requirement
is a must for ensuring correctness of the code. Otherwise, the Byzantine fault
model [15] must be assumed. Processor caches, at least in the current Pentium
design can not be controlled directly by the operating system, and therefore are
not considered here.

116 S. Dolev and R. Yagel

Magnetic \ Optical Disk

Latency CapacityRegister

Tape Storage \ san \ ...

sram

dram

Fig. 1. A Common Memory Hierarchy

The i/o state is the value of the connectors connecting to peripheral devices.
We assume that any information stored in the interface cards for these devices,
is also part of the memory.

A system configuration is a processor state and the content of the system
memory. A system execution E = (c1, a1, c2, a2, ...) is a sequence of alternating
system configurations and system steps. A system step consists of a processor
step together with the effect of the step on the memory (and other non stateless
devices, if they exist). Note that the entire execution can be defined by the first
configuration (for achieving self-stabilization usually assumed arbitrary) and the
external inputs at the clock ticks.

Additional Necessary and Sufficient Hardware Support: We assume that
in every infinite processor execution, PE, the processor executes fetch-decode-
execute infinitely often. Moreover, the processor executes a fetched command
according to its specification where the state of the processor, when the first
fetch starts is arbitrary. (Means for achieving such a behavior are presented in
[9]).

We assume there is a watchdog device connected to the nmi connector which
is guaranteed to periodically generate a signal every predefined time. Watchdog
devices are standard devices used in fault-tolerant systems e.g., [5,10]. We have
to design the watchdog to be self-stabilizing as well. The watchdog state is in
fact a countdown register with a maximal value equal to the desired interval
time. Starting from any state of the watchdog, a signal will be triggered within
the desired interval time and no premature signal will be triggered thereafter.
The watchdog guarantee execution of critical operating system code such as
code refresh and consistency checks [10] as well as the memory management
operations addressed in this work.

In order to guarantee that the processor will react to an nmi trigger, we
suggest the addition of an internal countdown register or nmi counter as part of
the processor architecture. This nmi counter will be decremented in every clock
tick until it reaches zero. Whenever an nmi handler is executed (the processor can
detect this according to a predefined program counter value), the nmi counter is
raised to its maximal value (chosen to be a fixed value greater than the expected
execution length of the nmi handler). The processor does not react to nmis when
the nmi counter does not contain zero. In addition, the iret operation assigns

Memory Management for Self-stabilizing Operating Systems 117

NMI / scheduler

IRET / next proc.

clock tick / next state

Scheduling

Processing

(a) Non-faulty execution

NMI / Scheduler

Scheduling

Any State

Processing

(b) Recovery through nmi

Fig. 2. System Transitions

zero to the nmi counter. Thus, we guarantee that nmis will eventually be handled
from any processor state. In addition, while one nmi is handled, all other nmi’s
will be masked. We say that a processor is in an nmi state whenever the nmi
connector is set and the nmi counter contains 0, which means that the next
operation to be executed is the first operation of the nmi handler procedure1.

A read only memory should be used for storing fixed values. Specifically, the
rom will contain at least the interrupt table entry for the nmi and the nmi
handler routine. This is needed in order to guarantee the execution of the nmi
interrupt handler which in turn will regain consistency.

Figure 2(a) illustrates the legal execution of the system. The system is com-
posed of various processes which are executing each in turn. Additionally, there
is a scheduler which is part of the nmi handler. The scheduler established its
own consistency and carries the process switch operation. It then validates the
next process’ state and sets the program counter so that the next chosen process
will be executed. Due to a fault, the system may reach any possible state, as
seen in Figure 2(b), but due to the nmi trigger design, eventually the scheduler
code will be called and will establish the required behavior.

The Error Model: we assume that every bit of the system’s variables might
change following some transient fault (e.g. soft-error). We also assume that code
portions are kept in read-only nonvolatile memories which can not be corrupted
(say by means of hardwired rom cheaps) and thus are not part of the system’s
state. We remark that a corruption of the code may lead to an arbitrary (Byzan-
tine) behavior!

The memory manager requirements includes both the consistency and the
stabilization preserving requirements:

1 Note that the Pentium design has a similar mechanism that ensures that no nmi is
executed immediately after an sti instruction.

118 S. Dolev and R. Yagel

Consistency: as the system executes, the memory manager keeps the mem-
ory hierarchy consistent (Analogously to the consistency requirement for non-
stabilizing operating systems). Namely we have to show that the contents of
say, the main memory and the disk are kept mutually consistent. Stabilization

Preserving: the fact that process and scope switching occurs, and the memory
is actually shared with other processes, will not falsify the stabilization property
of each process in the system.

A self-stabilizing memory manager is one that ensures that every infinite
execution of the system has a suffix in which both the consistency and the
stabilization preserving requirements hold.

3 Total Swapping — One Process at a Time

In the first solution the memory management is done by means of allocating
(almost) all the available memory (ram) to every process.

The settings for this solution are: n code portions, one for each process in
the system, reside in a persistent read only secondary storage. The soft state
of each process is repeatedly saved in the disk. The operating system includes
a self-stabilizing scheduler which activates processes in a round robin fashion.
Whenever a process is activated the process has all the memory for its operation
(except the portion used by the scheduler). The scheduler actions include saving
the state of the stopped process in the disk and loading the state of the new
process whenever a process switch occurs.

The scheduler executes process switch whenever a fixed time elapses since
the last process switch2. The processor state (register values) is saved in the
stack. Note that we ensure that for every processor state, stack operations will
not prevent the execution of the nmi handler, and the scheduler code will be
started.

The implementation uses the Pentium processor in its real (16 bit) operation
mode, thus paging and protection mechanisms are not used. This configuration
may not be acceptable for modern desktop operating system but is more common
in embedded systems and also serves as a simplified model to investigate the ap-
plication of the self-stabilization paradigm to operating systems. The protected
mode mechanisms might be used in satisfying the stabilization requirement, but
once the processor exits this mode, there is no guarantee anymore. Thus, we
assume the processor’s mode is hardwired during the system execution so the
mode flag is not part of the system’s (soft) state. For now, the disk driver oper-
ations are assumed to be atomic and stateless (achieving this abstraction is left
for future research).

The main drawback of this solution is of course the need to switch the whole
process state in every context switch. This might not be acceptable for all sys-
tems.
2 Note that a counter of clock interrupts may form a self-stabilizing mechanism for

triggering process switch, the counter upper bound is achieved no matter what is
the counter value when counting begins.

Memory Management for Self-stabilizing Operating Systems 119

Swap-Process(PT, i)
1 Memory-Save-Processor-State(PT, i)
2 Disk-Save-Process-State(i)
3 i ← (i + 1) modulo N
4 Cd-Rom-Load-Process-Code(i)
5 Disk-Load-Process-State(i)
6 Memory-Load-Processor-State(PT, i)

Fig. 3. Total Swapping Algorithm

The scheduler algorithm which appears in Figure 3 carries the memory man-
agement task. The algorithm uses an array in memory that is used for the process
table denoted by PT . PT keeps the entire processor state (the register values of
the processor) for each running process pi and i acts as a process pointer. Recall
that n is the (fixed) number of processes in the system. The scheduler saves the
state of the running process to the process table (line 1), and disk (line 2), then
increments the process counter (line 3), and loads the next process to be acti-
vated. The loading is carried by reloading the process code from the read-only
storage (line 4), process state from disk (line 5) and processor state from PT
in memory (line 6). The correctness of the algorithm is based on the fact that
the various procedures that save and load data depend only on the value of i
(that represents pi) which by itself is bounded by the number of processes in the
system.

4 Fixed Partition — Multiple Residing Processes

In this section we follow a better memory utilization which allows the partition-
ing of the memory among several processes. This reduces the number of accesses
to disk, thereby improving system performance. Still, when one partition is free
the processes in other partitions can not use this free memory. So although the
second design does not require the system to repeatedly transfer the entire data
between memory levels, the second design still constrains the size of the appli-
cations.

The decision concerning the set of processes that should be activated depends
on outside environmental inputs. This is needed since the main advantage of this
solution is rescheduling processes without costly disk operations. However, since
a priority mechanism is not used, all memory frames are occupied if n > m (m is
the number of partitions) so every context switch causes costly disk operations,
and the main advantage is lost. The process table is a natural candidate to hold
the additional activity status for each process. The entity which generates this
information as input to the memory manager is responsible for the correctness
and stability of this value.

The settings for this solution are: the code of n programs reside in a per-
sistent read only secondary storage. The operating system consists of (memory
hardwired) resident nmi handler and a scheduler process. The memory for the

120 S. Dolev and R. Yagel

-1

Process Table:

1

2

2 4

3

R.

...

S.

Frame Table:

F.

1

2 1

P.

...

P. F.

Fig. 4. Fixed Partition Consistency Check

applications is partitioned into m fixed equal length memory segments which are
called frames. Thus, programs are constrained to use the size of a frame. The
operating system uses a frame table FT which describes the currently residing
process in each memory frame. In addition there is a process table PT . The i’th
entry of PT consists of: (a) the last processor state of pi, for uploading in case
the process should be scheduled, (b) the frame number (address in ram) used by
pi (nil if not present), (c) refresh down counter, when the value of the counter
is zero, and pi is rescheduled, the code of pi is reloaded from cd-rom to make
sure it is not corrupted. The remaining state of the processes is kept on a disk.
The locations on disk, and cd-rom, are calculated from the process identifier i.

Upon the periodic nmi trigger, the processor execution context (register val-
ues) is saved to the stack and execution of the scheduler code is started. The
scheduler saves the processor state of the interrupted process to PT , selects the
next ready process, and then carries out the memory management actions nec-
essary for executing this process. The pseudo code for the algorithm appears in
Figure 5. In case the next process is not present in memory or there is an incon-
sistency between the process and frame tables (line 1), a new frame is chosen
(line 2) and the currently residing process is saved to disk (line 3). The refresh
counter is decreased for every activation of a process (line 4). In case this value
equals zero (line 5), the new process’ code is loaded from cd-rom (line 6).

The algorithm Find-Frame searches the frame table for a free frame. In
case all frames are used, some frame is chosen for replacement. First the frame
currently pointed to by this process’ entry is validated to be in range (line 1).
Next a search over FT starts from the pointed frame’s successor (line 2-4) until
an empty frame is found or the whole table is searched. Even if due to a fault,
say an error in the program counter which causes bypassing of lines 1 and 2
which calculate the loop limit value, the execution will eventually bypass this
loop. First, the size of the field used for storing the frame number in PT can be

Memory Management for Self-stabilizing Operating Systems 121

Select-Next-Process-And-Frame(PT, FT, i)
1 if frame[PT [i]] = nil or FT [frame[PT [i]]]
= i
2 then nf ← Find-Frame(PT, FT, i)
3 Swap-Process(PT, FT, i, nf)
4 decrease refresh[PT [i]]
5 if refresh[PT [i]] = 0
6 then Cd-Rom-Load-Process-Code(i, PT)

Find-Frame(PT, FT, i)
1 frame[PT [i]] ← frame[PT [i]] modulo M
2 nf ← (frame[PT [i]] + 1) modulo M
3 while nf
= frame[PT [i]] and FT [nf]
= nil
4 do nf ← (nf + 1) modulo M
5 return nf

Swap-Process(PT, FT, i, nf)
1 if FT [nf]
= nil
2 then Disk-Save-Process-State(FT [nf], nf)
3 frame[PT [FT [nf]]] ← nil
4 FT [nf] ← i
5 frame[PT [i]] ← nf
6 Disk-Load-Process-State(i, nf)
7 refresh[PT [i]] ← 1 � Causes code to be loaded.

Fig. 5. Fixed Partition Algorithm

bounded by m thus, increments of nf (line 4), must reach the loop limit value.
Secondly, the system is designed as that eventually an nmi will be triggered, and
the code will be re-executed from the first line.

The Swap-Process algorithm checks if there is a swapped out process due
to loading the new one (line 1), it saves to disk the state of this process (line 2),
and marks its frame entry in PT as nil (line 3). The entries of FT and PT are
updated with the new assignment (lines 4-5) and the state of the new process is
loaded to main memory (line 6). Finally, the code refresh bit is set to one (line
7), which will cause the main procedure to decrement it further to zero, and
thereafter load the new process’ code.

After the execution of the above algorithm the scheduler continues with the
swap, by loading the processor state of the new process from PT .

The correctness of the algorithm is based on the ongoing consistency checks of
FT and PT . Figure 4 demonstrates the consistency check made when assigning a
frame to a process. Frame 1 is assigned to p2, thus 1 is entered in the 2nd entry of
FT . Additionally, the frame field in the entry of p2 in PT (column marked with f)
is marked with the new frame number. The arrow lines demonstrate the exclusive
ownership to the selected frame, for every scheduled process. Additionally the
refresh field (column marked with r) shows the refresh counter which ensures
periodically refreshing of the code for the processes. (The s column represent
the processor state for each process).

122 S. Dolev and R. Yagel

We remark that the fixed partition restriction of the above solution can be
relaxed. Applications can be of variable size. The partition of main memory is
not fixed and a record of occupied space is maintained. Whenever a process is
about to be scheduled, the record is searched for a big enough space and the
application is loaded there. To ensure fulfillment of our requirements this record
must be kept consistent with the process table. Additional care, using standard
techniques, must be taken to address fragmentation of main memory and avoid
process starvation. The next section addresses variable memory sizes by means
of dynamic allocations.

5 Dynamic Allocation

Further enhancement of memory usage would be to remove the static allocation
nature of the programs and allow them to allocate memory in a malloc/free style.
Of course the operating system must keep track of memory usage according to
some policy. To ensure that there is no memory that is marked as used, due to
some fault, when it is in fact unused, a leasing mechanism is suggested where
applications must extend their lease from time to time. This way, memory that is
not in use will eventually become free (assuming no malicious Byzantine behavior
of processes). To be more precise, we would like to support a dynamic memory
allocation scheme where additional memory beyond the fixed memory required
for the code and the static variables may be on-demand allocated. To support the
management of the additional memory allocations in a self-stabilizing fashion,
a lease mechanism which limits the allocation of a new memory portion for the
use of a process either by time, or the number of steps the process performed
since the allocation, is used.

A memory manager process is responsible for allocating, and for memory
garbage collection. The dynamic memory manager uses bookkeeping to manage
the dynamic memory allocations. Allocations are tracked using a table that holds
for each allocation unit, the number of the owner process and the remaining lease
period. The dynamic memory manager repeatedly checks for memory portions
allocated to a process for which the lease expired, and returns every such memory
portion to the available memory pool for reallocation. The lease policy leaves the
responsibility for refreshing the leases to the programmer of the processes, and at
the same time allows simple and stabilizing dynamic memory management. We
can argue that starting in an arbitrary configuration, where the dynamic memory
is allocated randomly to processes, eventually no memory will be allocated to a
process which did not (recently) requested memory. Also, assuming no malicious
process behavior, in every infinite execution, repeated allocation requests will be
infinitely often respected. Up until this solution, programs were totally ignorant
of operating system services. Here the operating system exposes an application
programming interface for memory requests. Thus programs now should also
deal with temporary rejections of requests while the operating system satisfies
that eventually all legal requests will be respected.

Memory Management for Self-stabilizing Operating Systems 123

Figure 6 presents the algorithms which implement the interface which pro-
grams can call in order to use dynamic memory. The mm-alloc procedure is
used for requesting memory allocation. With mm-extendlease a lease extension
is possible. The applications are restricted to use the allocated memory through a
special segment selector register, the procedure mm-nextsegment is the only way
of accessing the different segments allocated to an application. At last, applica-
tions can release their allocations with mm-free. The operating system contains
a specialized process called mm-validator (the leading underscore marks a pro-
cedure internally called by the operating system) that validates the system’s
state concerning dynamic allocation. The algorithm is presented in Figure 7.
Additionally, we use several simple service procedures which are presented in
Figure 8.

Next we describe how the algorithms work. The mm-alloc algorithm inputs
are the number of allocations units (segments) required by the process and expi-

MM-Alloc(quantity, expiration)
1 if seg(PT [currentProcess])
= nil
2 then return
3 if quantity <= freeSegments
4 then MM-Assign(currentProcess, quantity, expiration)
5 MM-Enque(currentProcess, quantity, expiration)

MM-ExtendLease(newExpiration)
1 s ← seg(PT [currentProcess])
2 if owner(ST [s]) = currentProcess
3 then lease(ST [s]) ← newExpiration

MM-NextSegment()
1 currentSegment ← seg(PT [currentProcess])
2 if currentSegment
= nil
3 then for each s in {(currentSegment + 1) modulo NUM SEG..
4 (currentSegment − 1) modulo NUM SEG}
5 do if owner(ST [s]) = currentProcess
6 then seg(PT [currentProcess]) ← s
7 break

MM-Free()
1 currentSegment ← seg(PT [currentProcess])
2 MM-NextSegemnt(currentProcess)
3 if currentSegment
= nil
4 then if currentSegment = seg(PT [currentProcess])
5 then seg(PT [currentProcess]) ← nil
6 if owner(ST [currentSegment]) = currentProcess
7 then owner(ST [currentSegment]) ← NIL
8 freeSegments ← freeSegments + 1

Fig. 6. Dynamic Allocation Services

124 S. Dolev and R. Yagel

MM-Validation()
1 for each p in {0..NUM PROC − 1}
2 do usingDynamic[p] ← false
3 freeSegments ← 0
4 for each s in {0..NUM SEG − 1}
5 do p ← owner(ST [s])
6 if p
= nil
7 then lease(ST [s]) :← lease(ST [s]) − 1
8 if lease(ST [s]) = 0
9 then owner(ST [s]) ← nil

10 else usingDynamic[p] ← true
11 if owner(ST [s]) = nil
12 then freeSegments ← freeSegments + 1
13 for each p in {0..NUM PROC − 1}
14 do if usingDynamic[p] = false
15 then seg(PT [p]) ← nil
16 q ← top(Q)
17 if q
= nil and quantity(q) <= freeSegments
18 then MM-Dequeue()
19 MM-Assign(process(q), quantity(q), expiration(q))

Fig. 7. Dynamic Allocation Validation

ration period needed. The expiration is the number of activations of the process
for which the allocation will be valid, and this number is of course bounded(at
least) by the parameter length. After this period the validator will reclaim those
segments and mark them as free. In line 1 of the algorithm, the dynamic selector
(which in the implementation is realized in a specific processor segment register)
is checked to hold an empty address. If this is not the case it means that this
process is already using dynamic memory and the request is rejected in line 2
(for simplicity reasons we allow only one allocation at a time). In line 3 we check
whether there’s enough allocation units for this request through a global vari-
able that holds this count. We assign the requested quantity to the requesting
process with the mm-assign procedure which simply go over all the segments
in the segment table st and mark the needed quantity as occupied. This pro-
cedure also updates the free segment variable (line 5), and sets the dynamic
selector value with the address of one of the allocated segments (line 9). In case
not enough segments are available the request is queued through the procedure
mm-enqueue which first checks that there isn’t already a queue entry for this
process, and then finds an empty slot to enqueue the request. The queue size is
equal to the process number, thus exactly one slot for each process is reserved.

The mm-extendlease procedure carries it’s task by validating that the re-
quested segment is own by the requesting process and enlarge the lease counter
value. Again, this operation is allowed assuming there isn’t a malicious behavior
of processes. A different approach might be enabling the extension just in cases
where the queue is empty, thus preventing a repeated extension of a lease by
a particular process. As mentioned before, a process can access the allocated

Memory Management for Self-stabilizing Operating Systems 125

MM-Assign(process, quantity, expiration)
1 for each s in {0..NUM SEGMENTS − 1}
2 do if owner(ST [s]) = nil
3 then owner(ST [s]) ← process
4 lease(ST [s]) ← expiration
5 freeSegments ← freeSegments − 1
6 quantity ← quantity − 1
7 if quantity = 0
8 then break
9 seg(PT [process]) ← s

MM-Enqueu(process, quantity, expiration)
1 for each p in {0..NUM PROC − 1}
2 do if process(Q[p]) = process
3 then return
4 for each p in {0..NUM PROC − 1}
5 do if process(Q[p]) = nil
6 then process(Q[p]) ← process
7 quantity(Q[p]) ← quantity
8 expiration(Q[p]) ← expiration
9 break

MM-Dequeue()
1 for each p in {0..NUM PROC − 2}
2 do Q[p] ← Q[p + 1]
3 q[NUM PROC − 1] ← nil

Fig. 8. Dynamic Allocation Service Procedures

segment through a selector which it can not change. In order to move between
allocated segments, the process calls mm-nextsegment which looks in the seg-
ment table for all other segments and if another one is also occupied by the
calling process, it’s number is returned in the selector (line 6). The mm-free
procedure carries it’s task by first updating the selector with another segment
address (lines 1-2) then it checks if this selector is the only one owned by this
process, which means that the selector should be cleared too (line 5). In lines
6-8 the released segment is checked to be owned by the process and then marked
as free. The global counter of free segments is updated respectively.

The garbage collector algorithm (mm-validation) works as follow. In lines 1-2
it marks all processes as not using dynamic memory, this will allow initialization
of the dynamic selector for processes that are incorrectly marked as already using
dynamic memory. Thus subsequently such a process will be able to request (and
get!) allocations. In line 3 the global counter for free segments is reset, thus
only really used segments will be counted (in lines 11-12). The loop of lines 4-
12 iterates over all segments and decreases the lease for each of them. In case
a lease reaches zero, the segment is marked free (line 9). Otherwise we mark
the process as using dynamic memory (line 10). Lines 13-15 reset the dynamic

126 S. Dolev and R. Yagel

selector for processes that do not currently use dynamic memory. Then we check
the queue top and in case the first waiting process can be satisfied with the
current free segments, it is deleted from the queue (line 18) and assigned with
the free segments (line 19). The mm-dequeue procedure just moves all the entries
in the array implementing the queue one cell towards the queue top, and marks
the last entry as free.

Note that the memory manager can protect itself from a greedy process
by designing the mm-extendlease procedure such that extensions are allowed
only when the queue is empty. This way when there is a pending request, a
process that holds memory will eventually loose it. Thus, from any system state
eventually, enough segments will be freed for the top queue process and thereafter
it will be granted with it’s request. So eventually every request will be respected.

6 Concluding Remarks

We have presented three classes of self-stabilizing memory management schemes,
total swapping, fixed partition and dynamic memory allocation.

In order to also support virtual addressing, the page tables have to be kept
consistent, which will allow correct address translation made by the mmu (mem-
ory management unit). The page tables are usually also cached in a special
memory (tlb) so consistency must also be examined for this structure. (To
date, the Pentium’s tlb is not accessible by the operating system).

We have run the presented system using the bochs [3] simulator. During
some executions we totally changed the contents of the ram, and observed that
stabilization is achieved. Namely, the processor eventually continues to execute
the correct code of the operating system. At last we believe that self-stabilization
operating systems will be part of every critical computing system in the near
future. Proof sketches and prototype implementations, including machine code,
can be found in [11] and [20].

References

1. M. Baker, M. Sullivan. “The Recovery Box: Using Fast Recovery to Provide High
Availability in the UNIX Environment”, Proceedings of the Summer 1992 USENIX
Conference, Texas, June 1992

2. L. A. Belady, R. P. Parmelee, C. A. Scalzi. “The IBM History of Memory Manage-
ment Technology”, IBM Journal of Research and Development 25(5), pp. 491-504,
1981.

3. Bochs IA-32 Emulator Project. http://bochs.sourceforge.net/
4. O. Brukman, S. Dolev, H. Kolodner. “Self-Stabilizing Autonomic Recoverer for

Eventual Byzantine Software”, Proceedings of IEEE International Conference on
Software-Science Technology & Engineering, (SwSTE03), Israel, 2003.

5. M. Castro, B. Liskov. “Proactive Recovery in a Byzantine-Fault-Tolerant System”,
Proceedings of the Fourth Symposium on Operating Systems Design and Implemen-
tation, pp. 273-288, San Diego, CA, October 2000.

Memory Management for Self-stabilizing Operating Systems 127

6. R. C. Daley , J. B. Dennis. “Virtual memory, processes, and sharing in Multics”,
Proceedings of the first ACM symposium on Operating System Principles, p.12.1-
12.8, January 1967, Gatlinburg, TN.

7. E. W. Dijkstra. “Self-Stabilizing Systems in Spite of Distributed Control,” Com-
munications of the ACM, Vol. 17, No. 11, pp. 643-644, 1974.

8. S. Dolev. Self-Stabilization, The MIT Press, Cambridge, 2000.
9. S. Dolev, Y. Haviv, “Self-Stabilizing Soft Error Resilient Microprocessor” 17th

International Conference on Architecture of Computing Systems, LNCS:2981,
(ARCS04), 2004. Also to appear in IEEE Transaction on computers.

10. S. Dolev, R. Yagel. “Toward Self-Stabilizing Operating Systems”, Proceedings of
the 15th International Conference on Database and Expert Systems Applications,
2nd International Workshop on Self-Adaptive and Autonomic Computing Systems
(SAACS04,DEXA), pp. 684-688, Zaragoza, Spain, August 2004.

11. S. Dolev and R. Yagel. “Memory Management for Self-Stabilizing Operating Sys-
tems”. Technical report, #05-05, Computer Science, Ben-Gurion University, Beer-
Sheva, Israel, June 2005.

12. IBM. Autonomic computing initiative, http://www.research.ibm.com/auto-
nomic, 2001.

13. Intel Corporation. “The IA-32 Intel Architecture Software Developer’s Manual”,
http://developer.intel.com/design/pentium4 /documentation.htm, 2005.

14. M. Kistler, P. Shivakumar, L. Alvisi, D. Burger, and S. Keckler. “Modeling the
effect of technology trends on the soft error rate of combinational logic”. In
ICDSN, volume 72 of LNCS, pages 216–226, 2002.

15. L. Lamport, R. Shostak, and M. Pease. “The Byzantine Generals Problem”, ACM
Trans. on Programming Languages and Systems, Vol. 4, No. 3, pp. 382-401, 1982.

16. The Netwide Assembler. http://nasm.sourceforge.net.
17. D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez,

A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff,
J. Traupman, N. Treuhaft. “Recovery Oriented Computing(ROC): Motivation,
definition, techniques and case studies”, UC Berkeley Computer Science Technical
Report UCB/CSD-02-1175, Berkeley, CA, March 2002.

18. Jerome H. Saltzer. “Protection and the control of information sharing in multics”,
Communications of the ACM, v.17 n.7, p.388-402, July 1974.

19. M. M. Swift, B. N. Bershad, H. M. Levy. “Improving the reliability of commodity
operating systems”, Proceedings of the 19th ACM Symposium on Operating
Systems Principles - SOSP’03, Bolton Landing, NY, October 2003.

20. http://www.cs.bgu.ac.il/∼yagel/sos
21. http://www.selfstabilization.org
22. Sun Microsystems, Inc., “Predictive Self-Healing in the SolarisTM10 Oper-

ating System”, White paper http://www.sun.com/software/whitepapers
/solaris10/self healing.pdf, September 2004.

Code Stabilization

Felix C. Freiling1 and Sukumar Ghosh2,�

1 Laboratory for Dependable Distributed Systems,
RWTH Aachen University, Germany

2 The University of Iowa, Iowa City, USA

Abstract. Dijkstra’s concept of self-stabilization assumes that faults
can only affect the variables of a program. We study the notion of self-
stabilization if faults can also affect (i.e., augment) the program code
of a system. A code stabilizing system automatically recovers from (al-
most) arbitrary perturbations of its program code. We prove some lower
bounds for code stabilizing systems and argue that code stabilization has
many resemblances to the area of integrity management in the domain
of security.

1 Introduction

The concept of self-stabilization by Dijkstra [4] describes the fact that a system
will eventually return to good behavior when starting from an arbitrary state.
The arbitrary state was used as a tool to model the effects of transient faults
that changed the values of variables stored in volatile memory. The program
code however was always assumed to remain unchanged.

Interestingly, the assumption that the program code is not affected by faults
has remained unchallenged for a long time. Usually it is argued that the program
code resides in non-volatile read-only memory and can therefore be assumed to
remain constant. This is however only true for small and specialized systems (like
embedded systems) today. Most software which runs on PCs is stored on hard
disks which—while being non-volatile—still can be subject to changes through
faults. Moreover, the threats from unauthorized code alterations through ma-
licious software (like worms or viruses) are steadily increasing. Hence we feel
that it is time to investigate the notion of self-stabilization where faults can also
affect the code of the program.

In this paper we ask the question: How and when can self-stabilizing systems
recover not only from perturbations of the data but also from perturbations of the
program code? To answer this question we first give a formal definition of what
we call code stabilization. In analogy to self-stabilization (which we in contrast
call data stabilization) we define code stabilization to mean eventual recovery
of the program code to a “legal state”. Our definition is a clean extension of
Dijkstra’s definition: If the legal state of the code is a self-stabilizing algorithm,
then code stabilization implies also data stabilization.
� Work by Sukumar Ghosh was supported in part by a fellowship from Alexander von

Humboldt Foundation while visiting RWTH Aachen University.

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 128–139, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Code Stabilization 129

We further investigate the amount of perturbation tolerable in code stabi-
lization and prove that code stabilization is impossible if the entire code space
can be perturbed. Hence, a minimal nucleus of unaltered code space must always
remain. This is in clear contrast to self-stabilization where faults could affect all
the variables. We show that this minimal nucleus must have a size in the order
of the entire program. This result implies that code stabilization is a very costly
concept. However, in a distributed system it is possible to reduce the space re-
quirement of this nucleus to about the size of the code which is stored in only
one process.

Finally, we relate our findings to observations made in the area of security.
We discuss the area of software integrity management and argue that the concept
of code stabilization underlies many practical methods used in this area.

In summary, we provide the following contributions in this paper:

– We extend the definition of self-stabilization to code perturbations.
– We prove some lower bounds for this type of stabilization.
– We relate the new type of stabilization to practical methods from the area

of security.

To the best of our knowledge, the investigation of code perturbations in
the context of self-stabilization is novel. In can be seen as standing in a line
of research which considers stabilization as a useful abstraction in the area of
security (see for example work by Gouda [8]).

The paper is structured as follows: In Section 2 we present the system model
and the definition of code stabilization. In Section 3 we consider code stabiliza-
tion in the context of local (non-distributed) computations and subsequently
extend our findings to distributed computations in Section 4. In Section 5 we
relate code stabilization to concepts from the area of security. We conclude in
Section 6.

2 Code Stabilization: Definition

In this section we present a definition of code stabilization and relate it to the
concept of self-stabilization.

2.1 Systems, Programs, Code, and Data

A system is a general purpose computing machine that consists of an execution
unit and memory. Intuitively the execution unit is a microprocessor and the
memory is some form of data storage like RAM, ROM or external memory (e.g.
hard disk). The memory of a system is separated into two parts: a code part and
a data part. The code part stores the program which the system should execute.
We are not concerned here with the way in which the program is encoded in
memory except that we assume that it be executable. To execute the program,
the system chooses the next instruction from the code part, loads it into the
execution unit and executes the instruction, thereby possibly changing the data

130 F.C. Freiling and S. Ghosh

or code part of memory. Choice of the next program instruction can be done
deterministically (e.g. by using an explicit program counter stored in the data
part) or non-deterministically (like in the language of guarded commands [5]).
Note that we allow a program to update also the code part of memory, i.e., we
allow programs to be self-modifying.

The data part of memory can hold many different values. A particular assign-
ment of values to the variables in the data part is called a state of the program.
Let D denote the set of all possible states, i.e., all possible combinations of values
which may be stored in the data part.

A representation of the program in memory is called the code of the program
(or simply code). The code part of memory may hold many different codes (i.e.,
many different programs). Let C denote the set of all different codes that may
be stored in the code part of memory.

2.2 Distributed Systems and Executions

The definitions above can be easily extended to cover aspects of (geographical)
distribution. In a distributed system, the concept which we called a system above
is called a process. Each process has its individual execution unit and memory.
The code part of the memory of the distributed system is the union of all the code
parts of the processes. Similarly, the data part of the memory of the distributed
system is the union of the data part of the memories of all processes.

In a distributed system, processes need a method to communicate. Here we
assume that processes communicate through shared memory, i.e., we assume
that portions of the processes’ memory can be accessed by other processes. The
topology of the distributed system defines which process has access to the memory
of which other process. The type of access can be distinguished by its type (read
and/or write access) and the portion of the memory which it affects (code and/or
data part of the memory). We will differentiate special types of access later in
Section 4 where we consider distributed systems.

In general, for any system (be it distributed or not), the state of the entire
memory can be expressed as an element (c, d) ∈ C × D where c identifies the
code and d identifies the data state. An execution of a system is a sequence
σ = ((c1, d1), (c2, d2), . . .) of such code/data state pairs for which holds that for
all i, (ci+1, di+1) results from executing the fetch-execute cycle described above
on state (ci, di).

2.3 Memory Perturbations

We adopt here the standard fault-assumption of self-stabilization, i.e., the type
of faults we assume here are transient faults that can alter the state stored in
memory. This is a very general fault assumption encompassing things like tran-
sient memory faults (e.g., bit flips), faults during data transmission, brown-outs
due to transiently weak power supply, and effects of cosmic rays on memories.
We rule out faults that permanently affect the execution unit. We model the

Code Stabilization 131

effect of a fault by assuming that memory can spontaneously change into a cer-
tain “bad” state. Recovery of faults is achieved if the system by itself manages
to return into a “good” state, as we explain shortly. Given some type of fault,
the fault span [2] of that fault is the largest set of memory values which can be
reached by faulty behavior.

2.4 Data Stabilization

We now recall the definition of self-stabilization [1, 4]. To distinguish it from
other forms of stabilization, we use the term data stabilization instead of self-
stabilization.

Intuitively, data stabilization means that, given some set A of states, starting
from a state in A, a system always eventually reaches a set of legal states. If it
enters a legal state, then, as long as no faults occur, the next state of the system
is also legal. In the following, let D ⊆ D denote the set of legal states.

Definition 1 (data stabilization). Let A ⊆ D be a set of (data) states that
includes D (i.e., D ⊆ A). A system data stabilizes from A to D if the following
conditions hold for every execution σ = ((c1, d1), (c2, d2), . . .) of the system:

– (closure) for any (ci, di), if di ∈ D then di+1 ∈ D.
– (convergence) for any (ci, di) such that di ∈ A there exists a j ≥ i such that

dj ∈ D.

If A = D = true we omit mentioning the set A in the definition and simply
say that a system data stabilizes. Data stabilization from D = A is equivalent
to the notion of self-stabilization as introduced by Dijkstra [4].

2.5 Code Stabilization

We assume that the set of all codes C contains some programs that are illegal
(they do not solve the problem for which the system was built by, e.g., going
into an infinite loop). Conversely, we assume that there exists a set C ⊂ C of
legal codes.1

We now define code stabilization in analogy to data stabilization.

Definition 2 (code stabilization). Let B ⊆ C be a set of codes that includes
C (i.e., C ⊆ B). A system code stabilizes from B to C if the following conditions
hold for every execution σ = ((c1, d1), (c2, d2), . . .) of the system:

– (closure) for any (ci, di), if ci ∈ C then ci+1 ∈ C.
– (convergence) for any (ci, di) such that ci ∈ B there exists a j ≥ i such that

cj ∈ C.

1 Note that our definition allows the case where more than one code is legal, e.g., if
there are different syntactic representations which are semantically equivalent.

132 F.C. Freiling and S. Ghosh

We define probabilistic code stabilization (with probability p) as code stabi-
lization where the convergence property holds only probabilistically (i.e., with
probability p). Clearly, any system that is code stabilizing is also probabilistically
code stabilizing, therefore probabilistic code stabilization is a weaker concept
that code stabilization.

2.6 Relations Between Code and Data Stabilization

Code and data stabilization are defined independently, but they are not orthog-
onal since data stabilization relies on execution of correct code.

If faults are only allowed to perturb the data, then the code can be initialized
to some chosen value. If the code happens to be data stabilizing algorithm, then
we get the usual setting of self-stabilization. However, in the following assume
that faults may happen in data and code. In this case, data stabilization depends
on code stabilization.

Lemma 1. For any system, if the set of legal codes C contains only data stabi-
lizing algorithms, then the system data stabilizes only if it code stabilizes.

Proof. For a contradiction, assume that the code does not stabilize to a legal code
in C. This means that the code remains in a state which is not data stabilizing.
Hence, the system does not data stabilize. ��

Note that Lemma 1 cannot be strengthened to an equivalence. To see this
consider the case where a system does not code stabilize. In this case it may be
stuck in an arbitrary program, e.g. one that executes an infinite loop. Clearly,
such a system will not data stabilize. So data stabilization of some system is by
no means sufficient for code stabilization of that system.

We define a system to be completely stabilizing if and only if it is code stabi-
lizing and data stabilizing. A completely stabilizing system can tolerate a larger
fault-span than a data stabilizing system because an additional level of perturba-
tion is possible: corruptions of code space (see Figure 1). Code stabilization can
therefore be explained as driving the fault-span past the border of the variable
state space.

code space data space

data stabilizationcode stabilization

Fig. 1. Code stabilization: Moving the fault-span past to the left of the border between
code and data

Code Stabilization 133

datam

codem = datam−1

code2 = data1

code1

...

code3=data2

Fig. 2. Hierarchical construction of code stabilization. The code at level i is regarded
as the data at level i − 1.

3 Code Stabilization for Local Computations

In this section we consider code stabilization in a non-distributed setting, i.e.,
where the system consists of only one execution unit (one process).

3.1 A Technique to Establish Code Stabilization

How can code stabilizing systems be constructed? One simple way to do this is
to apply a layered approach and regard the code of one layer as the data of the
next layer (see Fig. 2). This approach builds upon the ideas of fair composition
of stabilizing protocols by Dolev, Israeli, and Moran [6]. If the system at one
level i is not code stabilizing, we enlarge the system by adding another code
part at level i − 1 which can modify the code at level i (the code of level i is
the data of level i− 1). Now define the correct codes of level i as the set of legal
states for code at level i − 1, then if the code of level i − 1 is data stabilizing,
the code at level i is code stabilizing.

If the code at the lowest layer (layer 1) is not affected by faults, then we can
show that the entire system is code stabilizing.

Theorem 1. Given the system as constructed in Fig. 2 in which the code of
every layer is a data stabilizing algorithm. If the code of level 1 is not perturbed
by faults, then the system is code stabilizing.

Proof. The proof is similar to the proof of self-stabilizing algorithms using the
idea of a convergence stair as introduced by Gouda and Multari [9]. The proof
is by induction over the levels.

134 F.C. Freiling and S. Ghosh

Since we assume that the code of level 1 is not perturbed by faults, this code
is trivially code stabilizing, which proves the base case.

Assume that all codes up to level i are code stabilizing. Since the code at
level i is data stabilizing, eventually the data of level i + 1 will reach a legal
configuration. The legal configurations however are precisely the set of codes of
level i+1. Therefore, the code at level i+1 is code stabilizing, which proves the
induction step. ��

The construction of Theorem 1 is conceptual. It does not necessarily mean
that additional execution units or memory (additional “hardware”) need to be
added to the system. It is just a way to structure the code and memory space of a
system. Note here that this construction results in programs which are inherently
self-modifying.

3.2 Minimal Requirements for Code Stabilization

One central prerequisite for Theorem 1 to hold is that the code of level m is not
perturbed by faults. This raises the question whether this assumption is really
necessary, i.e., is there a way to construct code stabilizing systems such that the
entire code part of the memory may be perturbed by faults? Unfortunately, this
is not the case, as we now explain.

The code of a program holds some form of information about this program.
We define the size of a code as the amount of information which it encodes.
Taking into consideration all possible programs that generate the same output as
the given program and choosing the shortest one, we get the minimal description
of it. (If there exist more than one program of the same minimal length, select the
lexicographically first among them.) The Kolmogorov complexity is the length of
the minimal description, and this defines the size k of the program [12]. We now
show that some minimal part of the code space must be safe from perturbations
in order to achieve code stabilization.

Theorem 2. In general, a code stabilizing system of size k requires an area of
non-perturbation of size at least O(k).

Proof. The most unfavorable case is one where faults perturb the entire code
and data space. Assuming that a code stabilizing system could recover from this
case would mean that the information contained in the original program must
be reconstructed from some source. However, if faults have perturbed the entire
state space, it is impossible to recover the data from anywhere. In general, the
amount of unperturbed storage corresponds directly to the size of the program
(the amount of information which is expressed by the code). Hence, for a code
of size k at least O(k) storage needs to be maintained and this storage must be
always unperturbed. ��

Note that Theorem 2 is rather general. It holds for any type of system (even
ones with self-modifying code) and also for probabilistic code stabilization. In
a sense, it prescribes for any program of size k a “safe nucleus” of size O(k)

Code Stabilization 135

from which it can be reconstructed. This makes code stabilization fundamentally
different from data stabilization because in data stabilization all data can be
perturbed without losing the ability to stabilize.

4 Code Stabilization for Distributed Computations

We now investigate how code stabilization can be achieved in distributed systems
and what the minimal requirements are to achieve code stabilization.

4.1 Uniformity Issues and Types of Remote Access

Let p and q be two processes. In the context of distributed systems with shared
memory, we need to distinguish among different types of access from p to q.
Process p has remote read access to q if p can read the entire code part of the
memory of q. Process p has remote write access to q if p can write to the entire
code part of q. If p has neither remote read nor remote write access to any other
process, we say that p has local access. Note that local access does not prohibit
processes to communicate since communication can still be done through some
shared data part of memory.

Many distributed algorithms assume the fact that individual processes can be
named using unique identifiers. Usually, these identifiers are assumed to be hard
coded into the algorithm. In the terminology of this paper, unique identifiers
are a part of the code. If faults can perturb the entire memory of a process,
then also these identifiers can change. This is not a problem if the algorithm
is uniform, i.e., it does not rely on the existence of unique identifiers and all
processes in the system execute an identical copy of the same code. However,
due to issues of symmetry breaking, uniform algorithms are faced with many
problems. Nevertheless, in the following we focus on uniform algorithms. We
discuss the impact of unique identifiers on our results later.

4.2 Techniques to Achieve Code Stabilization

Theorem 2 states that any program of size k needs an unperturbed memory
portion of size O(k) to code stabilize. In distributed systems with uniform algo-
rithms, the code is stored redundantly at all processes. Therefore, it is possible
to exploit this redundancy to achieve lower bounds for code stabilization than
were possible in the non-distributed setting.

In the following, let k be the size of the code of an individual process. A simple
and sufficient bound for code stabilization follows directly from Theorem 2. Since
every process can be regarded as a non-distributed system, if all processes have
only local access, then it is sufficient that all processes contain unperturbed code
space of size O(k). If processes have remote read and write access, this bound
can be improved.

Theorem 3. If some processes p has remote write access to all other processes
and all other processes do not have remote write access to p, then it is sufficient
that p contains unperturbed code space of size O(k).

136 F.C. Freiling and S. Ghosh

Proof. We prove the theorem by sketching a solution that achieves code stabi-
lization using unperturbed code space at a single process. The idea is as follows:
The code of every process is augmented with a program part that regularly tries
to write a copy of its own code to the code space of all other processes at once.
Even if all processes have been perturbed, eventually process p will overwrite the
perturbed code with an unperturbed copy of the code. Since p itself will not be
perturbed, eventually all processes contain a version of the unperturbed code,
yielding code stabilization. ��

Note that Theorem 3 needs special read/write restrictions on the topology
of the system. These are necessary in order to prevent a perturbed process from
writing a perturbed version of the code into p. This cannot be prevented even if
we assume that processes contain unique identifiers which cannot be perturbed
by faults.

The atomic update of the entire code state of the system is also necessary
since otherwise two perturbed processes could “re-perturb” each other infinitely
often if one of them is overwritten by p. For example, consider a setting with
three processes p, q and r and let p be the process containing the write-protected
and unperturbed code. If q and r have been perturbed, then the following se-
quence of write operations can happen and—if repeated infinitely—do not ensure
stabilization:

– p updates q to correct code.
– r perturbs q again to incorrect code.
– p updates r to correct code.
– q perturbs r again to incorrect code.

The assumption about the atomic update can be relaxed if we place restrictions
on the scheduling of processes. For example, if the scheduler ensures that a
sequence like the one sketched above never happens (or happens only with low
probability), then we also achieve (probabilistic) code stabilization.

Alternatively, we can weaken all of the above assumptions by assuming a
local checking mechanism and reverting to probabilistic code stabilization, at
the expense of requiring at least a constant size of unperturbed code space at
every process.

Theorem 4. If all processes have only remote read access to each other (and no
remote write access), then it is sufficient that some process contains unperturbed
code space of size O(k) and all other processes contain unperturbed code space of
size O(1) to achieve probabilistic code stabilization.

Proof. The central idea to construct a solution with the above characteristics is
to use cryptographic hash functions [13]. A cryptographic hash function maps
any finite string of bits to a fixed-size bit string, the fingerprint. Hash functions
have the property that it is very hard to find collisions, i.e., two input strings
that have the same fingerprint. In other words, it is very improbable that an
arbitrary (random or intentional) perturbation of some bit string results in a bit
string with the same fingerprint.

Code Stabilization 137

We augment every process with the following integrity checker program: Pe-
riodically, the process applies a cryptographic hash function to its own code and
compares the resulting fingerprint with the value stored in its unperturbed code
space. In case there is a mismatch, the process reads the code space of the to-
tally unperturbed process and overwrites its own code with that copy. By doing
this, any local code perturbations are erased. The only case that this does not
happen is when code is perturbed to a state which has the same fingerprint as
the legal code. The properties of cryptographic hash functions make this suffi-
ciently improbable. The integrity checker together with the fingerprint can be
implemented in constant space. Hence, probabilistic code stabilization with the
claimed space requirements is achieved. ��

In the proof of Theorem 4, it is necessary that all processes know from where
to copy the unperturbed code. This information must be encoded in the constant
size unperturbed part of their own code. Note also that the fingerprint must
not be stored locally, it can be stored remotely at the same location where
the unperturbed code resides or even can be computed on-the-fly. The method
to implement the integrity check (a cryptographic hash function) can also be
replaced by some form of error detecting code (like a CRC checksum) as long as
faults can be assumed to be random.

5 Related Work and Concepts

The techniques described in Section 4 to achieve code stabilization in distributed
systems have some similarities to other work in the area self-stabilization, namely
the principle of local checking and correction [3] and work by Katz and Perry
[11]. The idea is to regularly aquire a (local or global) snapshot of the state of
the system and in case of discovered inconsistencies to locally correct or globally
reset the system into a legal state. The problem in this area is to construct snap-
shot and reset procedures that are themselves self-stabilizing. In practice these
methods can be found in the form of automatically generated or handcrafted
runtime assertions within program code and exception handler mechanisms that
perform corrective measures. However note, that all of these methods rely on
the fact that the program code itself is unchanged.

Interestingly, there are close resemblances between our methods and the ap-
proaches from the area of security, more specifically from the area of (operating
system) integrity management. There, integrity is defined as protection against
unauthorized modification of the data and/or the code of a program. Integrity
violations usually occur due to malicious actions by attackers. A common threat
is a Trojan horse, a software which pretends to do something useful (like a
screensaver or a computer game) but in fact alters your operating system in un-
forseen and unpleasant ways. Popular alterations are the installation of sniffers
and keyloggers that capture sensitive data processed by the system, and post it
on the Internet. Another typical alteration is the installation of a back door for
a hacker, which enables unauthorized access to the system to outsiders. Modern
operating systems have become so complex that these alterations usually are

138 F.C. Freiling and S. Ghosh

not noticed by the user or system administrator. Integrity management assumes
that code is stored on writable media (like a hard disk) and aims at detecting
even subtle modifications and wherever possible also to correct them.

Concepts to prevent the effect of these types of modifications are read-only
files or filesystems that are supported by many of today’s Unix-like operating
systems (for example BSD 4.4 Unix offers read-only and append-only files, for a
more involved discussion see Garfinkel, Spafford and Schwartz [7]). However, the
most general approach in integrity management requires “clean” original copies
of all the data and code which is part of the operating system. On a regular
basis, the files of the running operating system are compared with the originals.
If unauthorized alterations are found, the compromised version is replaced by
the original version. The problems in integrity management correspond to the
minimal requirements of code stabilization: Care must be taken that the original
versions are unaltered and that the comparison and replacement software is also
not compromised.

Maintaining a full clean copy of the original files and comparing it with
the current ones on a computer is cumbersome in practice. This gave rise to a
tool called Tripwire that exists in a commercial [16] and a freely available open
source variant [15]. Tripwire maintains a database of cryptographic checksums
of important files. This database has to be initialized by creating checksums
of a known and unaltered baseline. At regular intervals, Tripwire takes snap-
shots of the system by comparing the checksums of the current version with the
clean stored checksums. By reporting on mismatches, integrity violations can be
detected or accepted changes merged into the database. Again it is vital that
Tripwire itself is unaltered when it is run. Ideally, the filesystem is checked after
booting a clean and original version of the operating system from CD including
the Tripwire program itself. If Tripwire is executed off a compromised operating
system, it may not operate in a trustworthy way [10]. The paradigm of Tripwire
closely resembles the observations made in Theorem 4. Note that Tripwire needs
to use cryptographic hash functions and not CRC checksums for example.

6 Conclusion

As noted by Ken Thompson in his 1984 Turing Award lecture [14], it is (almost)
impossible to trust a system which you have not checked down to the transistor
level. Today, integrity management software allows you to place trust on the
integrity of your operating system. Integrity means prevention of unauthorized
code or data modifications. Integrity is an increasingly important concern in
today’s computer systems, but requires a minimal amount of trustworthy code
to be manageable.

In this paper we have revisited the notion of self-stabilization in a new con-
text. Instead of allowing only data to be corrupted, we asked the question: To
what extent can code corruptions be tolerated? We extended the notion of self-
stabilization to also cover code corruptions. Our results on minimal unperturbed
storage space and on techniques to achieve code stabilization directly reflect

Code Stabilization 139

structures in the area of integrity management, and therefore can be used as a
theoretical foundation for this important area of security.

Acknowledgments

We wish to thank the anonymous reviewers for their constructive comments
regarding Theorems 2 and 3.

References

1. A. Arora and M. Gouda. Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering, 19(11):1015–1027, 1993.

2. A. Arora and S. S. Kulkarni. Component based design of multitolerant systems.
IEEE Transactions on Software Engineering, 24(1):63–78, Jan. 1998.

3. B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking
and correction. In FOCS91 Proceedings of the 31st Annual IEEE Symposium on
Foundations of Computer Science, pages 268–277, 1991.

4. E. W. Dijkstra. Self stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17(11):643–644, 1974.

5. E. W. Dijkstra. Guarded commands, nondeterminacy, and formal derivation of
programs. Communications of the ACM, 18(8):453–457, Aug. 1975.

6. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming
only read/write atomicity. Distributed Computing, 7:3–16, 1993.

7. S. Garfinkel, G. Spafford, and A. Schwartz. Practical UNIX & Internet Security.
O’Reilly & Associates, 2003.

8. M. G. Gouda. Elements of security: Closure, convergence, and protection. Infor-
mation Processing Letters, 77(2–4):109–114, 2001.

9. M. G. Gouda and N. J. Multari. Stabilizing communication protocols. IEEE
Transactions on Computers, 40(4):448–458, Apr. 1991.

10. Halflife. Bypassing integrity checkers. Phrack Magazine, 7(51), Sept. 1997.
11. S. Katz and K. J. Perry. Self-stabilizing extensions for message-passing systems.

Distributed Computing, 7:17–26, 1993.
12. M. Li and P. Vitányi. An introduction to Kolmogorov complexity and its applica-

tions. Springer, 2nd edition, 1997.
13. A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, Boca Raton, FL, 1997.
14. K. L. Thompson. Reflections on trusting trust. Communications of the ACM,

27(8):761–763, Aug. 1984.
15. Open Source Tripwire. Internet: http://www.sourceforge.net/projects/

tripwire/.
16. Tripwire change auditing solutions. Internet: http://www.tripwire.com.

Stabilizing Certificate Dispersal

Mohamed G. Gouda and Eunjin (EJ) Jung

Department of Computer Sciences,
The University of Texas at Austin,

Austin, TX U.S.A.
{gouda,ejung}@cs.utexas.edu

Abstract. A certificate issued by a user u for another user v enables
any user that knows the public key of u to obtain the public key of v.
A certificate dispersal D assigns a set of certificates D.u to each user u
in the system so that user u can find a public key of any other user v
without consulting a third party. In this paper, we present a stabilizing
certificate dispersal protocol that tolerates transient faults and changes
in the certificate system. For example, when a certificate is issued or
revoked, this change may lead the system into a state where the set
of certificates assigned to each user no longer constitutes a certificate
dispersal. Our “dynamic dispersal” protocol eventually brings the system
back to a legitimate state where the set of certificates assigned to each
user constitutes a certificate dispersal.

1 Introduction

In a distributed system, public key cryptography is often used to provide security
features such as authentication and authorization. For example, when a client
wants to have assurance that he is communicating with the correct server, then
the client can use the public key of the server for authentication. The client may
pick up a random number and encrypt it with the public key of the server. When
the server receives the encrypted message, the server decrypts the message with
the matching private key and sends the number back to the client. When the
client receives the correct number, the client can authenticate the server. In fact,
this is how customers authenticate the web servers using Secure Socket Layer
(SSL) [1] in the Internet. This use of public key cryptography necessitates that
the users know the public keys of other users in the system.

The public keys can be advertised through certificates. A certificate (u, v)
issued by a user u for another user v contains the public key of user v and is
signed with the private key of user u. Any user who knows the public key of
user u can verify this certificate and obtain the public key of user v. A certificate
dispersal D assigns a set of certificates D.u to each user u in the system so that
user u can find a public key of any other user v without consulting a third party.
In this paper, we show a stabilizing certificate dispersal protocol that tolerates
transient faults and changes in the certificate system.

The concept of stabilization [2,3] was first introduced by Dijkstra [4]. His de-
finition of a stabilizing system was “regardless of its initial state, it is guaranteed

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 140–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Stabilizing Certificate Dispersal 141

to arrive at a legitimate states in a finite number of steps.” This concept is very
useful in building a fault-tolerant system under a model of transient failures.
For example, when a certificate is issued or revoked, this change may lead the
system into a state where the set of certificates assigned to each user no longer
constitutes a certificate dispersal. Our “dynamic dispersal” protocol eventually
brings the system back to a legitimate state where the set of certificates assigned
to each user constitutes a certificate dispersal. In Section 5, we prove that our
dynamic dispersal protocol is stabilizing.

In the following sections, we give formal definitions of certificate systems and
present our dynamic dispersal protocol. We prove that this protocol is stabilizing
and discuss some events that may lead the system out of the legitimate states
and show that the dynamic dispersal protocol eventually brings the system back
to a legitimate state.

2 Certificate Systems

We consider a system where each user u has a private key R.u and a public key
B.u. In this system, in order for a user u to securely send a message m to another
user v, user u needs to encrypt the message m using the public key B.v, before
sending the encrypted message, denoted B.v{m}, to user v. This necessitates
that user u know the public key B.v of user v.

If a user u knows the public key B.v of another user v in this system, then
user u can issue a certificate, called a certificate from u to v, that identifies the
public key B.v of user v. This certificate can be used by any user in the system
that knows the public key of user u to further acquire the public key of user v.
An example of such system is Pretty Good Privacy (PGP) [5].

A certificate from user u to user v is of the following form:

〈u, v, B.v, expr, sig〉

This certificate is signed using the private key R.u of user u, and it includes five
items:

u is the identity of the issuer,
v is the identity of the subject,
B.v is the public key of the subject v,
expr is the expiration date, and
sig is an encrypted message digest of

this certificate.

sig is constructed by computing a message digest of all other four items in
this certificate and encrypting the message digest with the private key R.u of
issuer u.

For simplicity, a certificate 〈u, v, B.v, expr, sig〉 is denoted (u, v). Any user
x that knows the public key B.u of user u can use B.u to decrypt sig in (u, v).
If the decrypted message matches the message digest of all other four items in

142 M.G. Gouda and E. Jung

d

c e

a

b

Fig. 1. A certificate graph example

the certificate, then user x can accept the key B.v in certificate (u, v) as the
public key of user v. A valid certificate (u, v) is an unexpired certificate with the
correct signature.

Even though public key cryptography has strong guarantees, a public key can
be used only for a finite amount of time. (A dictionary attack will eventually
succeed.) Therefore, each certificate has an expiration date and every certificate
system requires some degree of clock synchronization. In practice, the expiration
of certificates happens daily, and the lifetime of a certificate is often quite long,
say a year, so the clock may be skewed by hours and this certificate system
would still run correctly. As an alternative, we can also assume the clock rates of
all users are the same. (In this case, we need to use version numbers instead of
expiration dates.) All users will agree on the number of clock ticks as the lifetime
of a certificate and use version numbers to verify the freshness of certificates. For
simplicity, we assume that we have perfect clock synchronization in this paper.
However, the protocol works as long as the clock skew is small enough that users
will be able to detect expired certificates not too late.

The certificates issued by different users in a system can be represented by
a directed graph, called the certificate graph of the system. Each node u in the
certificate graph represents a user u and its corresponding public and private
key pair B.u and R.u. Each directed edge (u, v) from node u to node v in the
certificate graph represents a certificate 〈u, v, B.v, expr, sig〉.

Fig. 1 shows a certificate graph for a system with five users: a, b, c, d, and e.
According to this graph,

user a issued two certificates (a, b) and (a, d)
user b issued one certificate (b, c)
user c issued one certificate (c, e)
user d issued one certificate (d, c)
user e issued no certificates.

A simple path (v0, v1), (v1, v2), · · · , (vk−1, vk) in a certificate graph G, where
the nodes v0, v1, · · · , vk are all distinct, is called a certificate chain from v0 to
vk in G of length k. Node v0 in this chain can accept all the keys B.v1 · · ·B.vk in
the certificates in this chain as the public keys of the users v1 · · · vk, respectively.
For example, user a in Fig. 1 may use the certificate chain (a, b)(b, c) to accept
the public keys B.b and B.c of user b and user c.

3 Certificate Dispersal

In a certificate system, when a user u wants to securely communicate with an-
other user v, u needs to find a certificate chain from u to v to obtain the public

Stabilizing Certificate Dispersal 143

key of user v. Therefore, each user can store a subset of certificates in the cer-
tificate system to securely communicate with each other.

A certificate dispersal of a certificate graph G is a function that assigns a
set of certificates CERT.u to each user u in G such that the following condition
holds. If there is a certificate chain from a user u to a user v in G, then u and v
can find a chain from u to v using the certificates in the set CERT.u∪CERT.v.

A certificate dispersal is optimal if and only if the average number of certifi-
cates stored in each user due to this dispersal is minimum.

For the certificate graph in Fig. 1, an optimal certificate dispersal is as follows:

CERT.a := {(a, d), (a, b), (b, c)}
CERT.b := {(b, c)}
CERT.c := {}
CERT.d := {(d, c)}
CERT.e := {(c, e)}

Based on this dispersal, when user a wishes to securely communicate with
user c, user a can use the two certificates (a, b) and (b, c) in CERT.a to obtain
the public key of user c. Also, when user b wishes to securely communicate with
user e, user b can use the two certificates (b, c) in CERT.b and (c, e) in CERT.e
to obtain the public key of user e.

In general, an optimal dispersal is hard to compute [6]. A certificate dispersal,
that is not necessarily optimal, can be obtained by storing a “maximal reach
tree” of certificates in each users. A maximal reach tree of a graph is a tree
that contains all the reachable nodes from the root. Lemma 4 in [7] proves the
following theorem.

Theorem 1. A certificate dispersal of a certificate graph G is obtained by stor-
ing in each CERT.u the certificates in a maximal reach tree rooted at u for each
user u in G.

For the certificate graph in Fig. 1, the certificate dispersal using reach trees
is as follows:

CERT.a := {(a, d), (a, b), (b, c), (c, e)}
CERT.b := {(b, c), (c, e)}
CERT.c := {(c, e)}
CERT.d := {(d, c), (c, e)}
CERT.e := {}

Note that a maximal reach tree rooted at user u does not necessarily include
all the users in the certificate graph. Each reach tree rooted at user u includes
only the reachable users from u in the certificate graph. For example, the maxi-
mal reach tree rooted at user d includes only users d, c, and e. Also, there can
be multiple reach trees in the certificate graph for the same root. For example,
there are two possible maximal reach trees rooted at user a as shown in Fig. 2.
CERT.a needs to contain the certificates of only one of the two reach trees. The
example dispersal above contains the certificates from the reach tree in Fig. 2(b).

144 M.G. Gouda and E. Jung

d

c e

d

c e

a

b

a

b

(a) (b)

Fig. 2. Two possible reach trees

4 Dynamic Dispersal

In the previous section, we discussed the concept of certificate dispersal. Algo-
rithms in [7] show how to compute a certificate dispersal for a “static” certificate
graph, i.e. the topology of the certificate graph does not change over time. How-
ever, in many certificate systems, certificate graphs do change due to issuing new
certificates, adding new users, revoking old certificates, and removing old users.
To maintain the certificate dispersal of a dynamic certificate graph, the changes
in the graph need to be propagated to the appropriate users.

Fig. 3 shows the inputs and output of our dynamic dispersal protocol. The
dynamic dispersal protocol running at each user has two inputs FORE and BACK.
FORE in user u is the set of the certificates that have been issued by user u, and
BACK in user u is the set of users that have issued certificates for u. Note that
the two inputs FORE and BACK in all users define the certificate graph of the
system. We assume that FORE and BACK are maintained by an outside protocol
that issues new certificates and revokes old ones. We also assume that FORE and
BACK are always correct and so they are always consistent. For example, if at
any time a certificate (u, v) is in FORE.u of user u, then u is in BACK.v of user v
at the same time.

The dynamic dispersal protocol maintains a variable CERT.u at each user u.
At stabilization, the value of CERT.u is a maximal reach tree rooted at user u.
Thus, by Theorem 1, the values of CERTs at stabilization constitute a certificate
dispersal of the system.

The dynamic dispersal protocol in user u is shown in Protocol 1 below.
Protocol 1 consists of three actions.

BACK/FORE

Certificate issuing/revocation

Dynamic Dispersal

CERT

Fig. 3. Inputs and Output of Dynamic Dispersal Protocol

Stabilizing Certificate Dispersal 145

In the first action, when the timer of user u expires, user u uses its input
FORE.u to update the variable CERT.u and sends a copy of CERT.u to each user
v in BACK.u. Then u updates its timer to expire after ltime time units, and the
cycle repeats. For convenience, we refer to CERT.u messages that user u has sent
in this action as a round of gossip. If user u does not change its CERT.u and does
not observe any change in its inputs FORE.u and BACK.u, then the time period
between two consecutive rounds of gossip by u is ltime time units. The value
ltime is expected to be in the range of days or months.

In the second action, user u receives a certificate tree sent by a user v (where
u is in BACK.v). In this case, u updates its CERT.u using its input FORE.u, and
then merges its CERT.u with the received certificate tree. If the update or merge
operations change CERT.u then u reduces the value of its timer to at most stime
time units. Note that the value stime is in the range of minutes or hours so it
is much less than the value ltime. In other words, any change in the variable
CERT.u causes u to initiate its next round of gossip after no more than stime
time units.

In the third action, when user u observes that its inputs BACK.u or FORE.u has
changed, then user u sets its timer to be at most stime time units. This change
causes u to initiate its next round of gossip after no more than stime time units.

4.1 Issuing certificates

When a user u issues a certificate (u, v), there are two events that need to occur.
(Note that these two events happen outside the dynamic dispersal protocol.)
The first event is to add (u, v) to FORE.u, and the second action is to add u
to BACK.v. These events cause users u and v to execute the third action in the
protocol and to reduce their timers to be at most stime time units. In stime
time units, the timers in both users u and v will expire and then users u and v
will execute the first action and update their CERTs accordingly and send a copy
to the users in their BACKs.

4.2 Revoking Certificates

When a user u wants to revoke a certificate (u, v) it has issued before, two events
need to occur in users u and v. (Note that these two events happen outside the
dynamic dispersal protocol.) The first event is to remove (u, v) from FORE.u, and
the second action is to remove u from BACK.v.

When user u observes the change in FORE.u, u executes the third action and
set its timer to be at most stime. When the timer expires, u will update CERT.u
and send it to users in BACK.u. When user x in BACK.u receives the newly updated
CERT.u from user u, x will merge it with its own CERT.x. During this merge, the
revoked certificate (u, v) and any path using that certificate will be removed
from CERT.x.

4.3 Expired Certificates

We assume that when a certificate (u, v) expires, it is removed from FORE.u and u
is removed from BACK.v in user v. This triggers user u to set its timer to be at most

146 M.G. Gouda and E. Jung

PROTOCOL 1. dynamic dispersal

user u

const stime, ltime //stime is a short time period
//ltime is a long time period
//ltime is greater than stime

input BACK : {x| x has issued a certificate (x,u)}
FORE : {(u,x) | u has issued a certificate (u,x)}

var CERT : a certificate tree rooted at u
tree : a certificate tree
timer : 0..ltime
v : any user other than u

begin
timer=0 -> update(CERT, FORE);

for each user v in BACK, send CERT to v;
timer:=ltime

[] rcv tree from v -> update(CERT, FORE);
merge(CERT, tree);
if CERT has changed, timer:=min(timer, stime)

[] BACK or FORE has changed -> timer:=min(timer,stime)

end

stime and user u will update its CERT.u accordingly and send a copy of CERT.u
to users in BACK.u. Similarly to the case of certificate revocation, when a node x
in BACK.u receives CERT.u, then x will update CERT.x and remove (u, v) from it.

4.4 update Procedure

Procedure update(CERT,FORE) is defined as follows.
It is convenient to explain this procedure by an example. Consider user a

where FORE.a in user a contains one certificate (a, b) and CERT.a contains two
certificates (a, b), (b, c) as shown in Fig. 4(a). When user a issues a new certificate

c

a

b c

a

b

a

c

a

bb

(a) (b)

FORE.a CERT.a FORE.a CERT.a

Fig. 4. update of CERT.a due to change in FORE.a

Stabilizing Certificate Dispersal 147

PROCEDURE 1. update(CERT, FORE)
INPUT: a certificate tree CERT rooted at u and

a set of certificates FORE issued by u
OUTPUT: a certificate tree CERT rooted at u

var tmp: a certificate tree rooted at u

begin

add all the valid certificates in FORE to tmp;
while there is a valid certificate (x,y) in CERT where

x != u,
x is in tmp, and
v is not in tmp

do add (u,v) to tmp;
CERT:=tmp;

end

(a, c), FORE.a changes into {(a, b), (a, c)}. This change causes user a to execute its
third action and then after stime time units to execute its first action. In the first
action, procedure update(CERT.a,FORE.a) is executed. First, all the certificates
in FORE.a are added to a certificate tree tmp and tmp becomes {(a, b), (a, c)}.
Certificate (b, c) cannot be added to tmp because user c is already in tmp. In the
last step, tmp is copied to CERT.a, and CERT.a becomes {(a, b), (a, c)} as shown
in Fig. 4(b).

4.5 merge Procedure

Procedure merge(CERT,tree) is defined as follows.
It is convenient to explain this procedure by an example. Consider user a

where FORE.a contains two certificate (a, b), (a, c) and CERT.a contains three cer-
tificates (a, b), (a, c), (b, d) as shown in Fig. 5(a). When user b revokes certificate
(b, d), FORE.b changes into {(b, c)}. This change causes user b to execute its third
action and after stime time units to execute its first action. In the first ac-
tion, user b updates its CERT.b to be {(b, c)}. User a still does not know about

d

c

a

b

d

cb cb c

a

b

(a)

CERT.b

(b)

CERT.b CERT.aCERT.a

Fig. 5. merge of CERT.a due to change in CERT.b

148 M.G. Gouda and E. Jung

PROCEDURE 2. merge(CERT, tree)
INPUT: a certificate tree CERT rooted at u and

a certificate tree ‘‘tree’’ rooted at t, where
t != u

OUTPUT: a certificate tree CERT

begin

if CERT has a certificate (u,t) ->
remove all the certificates in the subtree rooted at t from CERT;
while tree has a valid certificate (x,y) where

x is in CERT and
y is not in CERT

do add y and certificate (x,y) to CERT;
[] CERT has no certificate (u,t) ->

skip
fi

end

this revocation, so CERT.a remains the same as shown in Fig. 5(a). After stime
time units, user b sends a copy of its CERT.b to user a. When user a receives
the certificate tree {(b, c)}, user a executes its second action, and procedure
merge(CERT.a,tree) is executed with CERT.a and the received tree {(b, c)}. Pro-
cedure merge(CERT.a,tree) first checks if there is certificate (a, b) in CERT.a.
There is certificate (a, b), so the subtree rooted at user b, (b, d) in CERT.a is re-
moved from CERT.a. Then, certificate (b, c) is considered, but is not added to
CERT.a because c is already in CERT.a. In result, CERT.a becomes {(a, b), (a, c)}
as shown in Fig. 5(b).

5 Stabilization of Dynamic Dispersal

The dynamic dispersal algorithm in Section 4 is based on a message passing
model. In [8], it is shown to be hard to design stabilizing protocols in the tra-
ditional message passing model where there are channels between users. In this
paper, we use a non-conventional model of communication. A state consists of
the values of timer and CERT of all the users in the system. As mentioned in Sec-
tion 4, we assume that FORE and BACK of each user remain correct and consistent
in every state. In one state transition, only one user can execute its first action.
Furthermore, in the same transition, each user v in BACK.u receives the same
copy of this message and executes its second action. In other words, we have
no messages in transit, so there is no need for channels in the state description.
There are two reasons that we adopted this model. First, this model allows the
proofs to be easier to follow. Second, this model is sensible, given that the time
it takes for the timer in each user to expire is very large compared to the time

Stabilizing Certificate Dispersal 149

each state transition takes. stime is in the range of minutes and hours, and each
state transition takes only milliseconds, so we can assume that no two timers
expire at the same time.

For the proofs of convergence and closure, we define a computation to be
a sequence of states of the system where along with this computation FORE
and BACK of all the users remain unchanged. In the following theorems, we
show that the dynamic dispersal protocol eventually stabilizes into a legiti-
mate state, where the values of CERTs of all users constitute a certificate dis-
persal of the certificate graph of the system. Following the proof technique
in [9], we show the convergence and the closure of this protocol to prove its
stabilization.

Theorem 2. (Convergence) Each computation of the dynamic dispersal protocol
has a state where the value of each CERT.u in the protocol is a maximal reach tree
rooted at u in the certificate graph of the protocol (as defined by the two inputs
FORE and BACK of all users in the protocol).

Proof Sketch. To prove that CERT.u eventually becomes a maximal reach tree
rooted at node u of the certificate graph G, we first prove that CERT.u eventually
becomes a tree rooted at u, and then prove that every node that is reachable
from u in G is reachable in CERT.u.

There are two procedures, update(CERT.u,FORE.u)and merge(CERT.u,tree),
that can change CERT.u. The procedure update(CERT.u,FORE.u) constructs a
tree by starting from the certificates in FORE.u. All the certificates in FORE.u are
issued by user u, so the resulting tree from update(CERT.u,FORE.u) is rooted
at u. Similarly, the procedure merge(CERT.u,tree) adds certificates in the re-
ceived tree to CERT.u, a certificate tree rooted at u. Therefore, the resulting
tree from merge(CERT.u,tree) is also rooted at u. Based on these observations,
after a state transition in this computation, CERT.u in user u becomes a tree
rooted at u.

Now we prove that CERT.u is a maximal reach tree, i.e. any node that is
reachable from node u in G is also CERT.u. Assume that there is a path from
u to another node v in G, (u, u1)(u1, u2) · · · (uk, v). Node uk has the certificate
(uk, v) in its FORE, so the certificate (uk, v) is in its CERT. Node uk sends its CERT
periodically to node uk−1, so node uk−1 will have a path from itself to node v in
its CERT. Repeatedly, each node on the path will send its CERT to the previous
node in the path and node u will have a path from itself to node v in its CERT.
Therefore, every node v that is reachable from node u in G is also reachable in
CERT.u. �

Note that our dynamic dispersal protocol is different from stabilizing span-
ning tree algorithms. The spanning tree algorithms in [10,11,12] build a single
spanning tree for the whole system that covers every process in the system, and
build one tree rooted at a special process (usually referred as a leader). Each
process in these algorithms stores the parent node identifier, the distance from
the root, and possibly the root identifier. On the other hand, our dynamic disper-
sal protocol stores a maximal reach tree in each user, which does not necessarily

150 M.G. Gouda and E. Jung

cover every user in the system. Also, in our dynamic dispersal protocol, there is
no leader, and each user u maintains a maximal reach tree rooted at u.

Theorem 3. (Closure) Executing any step of the dynamic dispersal protocol
starting from a state, where the value of each variable CERT.u in the protocol is a
maximal reach tree rooted at u, leaves the values of all CERT variables unchanged.

Proof Sketch. In a computation, the inputs BACK and FORE remain unchanged.
Therefore, only two types of steps can be executed: time propagation and the
first action. Time propagation cannot change the value of CERT. When the time
propagation causes the timer in user u to expire, the first action in the dynamic
dispersal protocol will be executed. When the timer expires, user u updates
its CERT.u with FORE.u, but CERT.u remains the same since FORE.u remains un-
changed. Now user u sends a copy of its CERT.u to each user v in BACK.u. User
v receives a tree and merge it with its own CERT.v. Since CERT.u is the same,
merge(CERT,tree)will not change CERT.v. Therefore, when the certificate graph
of the system does not change, CERT.u in each user u, a maximal reach tree rooted
at u, remains unchanged. �

6 Time Complexity

In this section, we compute the time in terms of the two timers stime and ltime
that takes to bring the system to stabilization. Note that each state transition
is triggered by a timer expiration in a user, so the time between any two state
transitions may be between 0 to ltime. Every state transition but the first one
towards stabilization is triggered by a timer whose value is at most stime, which
is shown below.

Theorem 4. In each computation of the dynamic dispersal protocol, the protocol
reaches a legitimate state in at most T time units, where

T = ltime× the length of the longest path in the certificate graph -1

Proof Sketch. A legitimate state of the dynamic dispersal protocol is one where
the value of CERT.u of every user u in the system is a maximal reach tree rooted
at u.

After the first ltime time units in the computation, each CERT.u is a tree
rooted at u, and the first two levels of this tree are correct. After the second
ltime time units, each user sends a copy of its CERT to the users in the BACK, so
the top three levels of each CERT are correct. The cycle repeats, and after ltime
× (the length of the longest path in the certificate graph-1) time units, all the
levels of each tree CERT are correct, so CERT.u becomes a maximal reach tree
rooted at u. �

We believe that the upper bound on the convergence span described in Theo-
rem 4 is quite loose. It is an interesting problem to compute a tight upper bound
of the convergence span.

Stabilizing Certificate Dispersal 151

7 Dispersal in Client/Server Systems

This dynamic dispersal protocol is useful in any dynamic certificate systems.
Consider a client/server system, where there are much fewer servers than clients in
the system. We can run the dynamic dispersal protocol among the servers and let
any server issue a certificate for a client. Each server will have an maximal reach
certificate tree in its CERT, so each server will be able to find a certificate chain
from itself to any client that has a certificate issued by an authenticated server.

For example, many coffee shops offer free Internet connection for their cus-
tomers. To prevent free-riders that are not customers, coffee shops may require
the customers to register. For convenience, a customer needs to register only once
at any coffee shop (the coffee shop issues a certificate for the customer), and the
customer can use the free connection at all coffee shops that are participating
in this membership without logging in or getting temporary authorization each
time he or she goes to a coffee shop, since any coffee shop has a certificate chain
from itself to the customer. The authentication using the certificate chain does
not require any interaction with the customer, so once the customer registers to
get a certificate from one coffee shop, the customer does not need to know how
he or she gets authenticated and authorized for the Internet connection.

Also, this client/server system can help two clients authenticate each other.
A client c1 has issued a certificate for a server s1 and s1 issued a certificate for
c1. A client c2 has issued a certificate for a server s2 and s2 issued a certificate
for c2. When client c1 wants to securely communicate with client c2, client c1
can ask server s1 for a certificate chain from s1 to s2 and use the chain and the
certificates (c1, s1) and (s2, c2) to find the public key of client c2.

A hierarchical certificate authorities used in Lotus Notes [13] is a special
case of such client/server system. In a system with a hierarchical certificate
authorities, the certificate graph between certificate authorities constitutes a
star graph, where the root certificate authority has issued a certificate for each
non-root certificate authority and each non-root certificate authority has issued
a certificate for the root certificate authority. In such a system, when a client
c1 who has issued a certificate for a certificate authority ca1 wants to securely
communicate with another client c2 who has issued a certificate for a certificate
authority ca2, c1 can contact ca1 for certificates (ca1, root)(root, ca2). In Lotus
Notes, ca1 also finds the certificate (ca2, c2) from ca2 so that c1 can use the
public key of c2 safely without communicating with c2.

8 Concluding Remarks

Public key cryptography is often used to provide security features in a distributed
system. For users to use public key cryptography, they need to know the public
keys of other users. Certificates are useful to advertise public keys to other users.
In particular, when a user u wishes to securely communicate with another user
v, user u needs to find a certificate chain from u to v. A certificate dispersal D
assigns a set of certificates CERT.u to each user u so that user u can find such
a chain in CERT.u ∪ CERT.v.

152 M.G. Gouda and E. Jung

We present the dynamic dispersal protocol, which eventually stabilizes a
certificate system into the legitimate states where the set of certificates assigned
to each user constitutes a certificate dispersal when a certificate graph of the
certificate system is dynamic. We prove the convergence and the closure of the
protocol, and show the time complexity of the convergence.

References

1. Dierks, T., Rescorla, E.: The TLS protocol version 1.1. Internet Draft (draft-ietf-
tls-rfc2246-bis-08.txt) (2004)

2. Dolev, S.: Self-Stabilization. MIT Press (2000)
3. Herman, T.: A comprehensive bibliography on self-stabilization. Chicago Journal

of Theoretical Computer Science (1996)
4. Dijkstra, E.W.: Self-stabilization in spite of distributed control. ACM Communi-

cations 17 (1974) 643–644
5. Zimmerman, P.: The Official PGP User’s Guide. MIT Press (1995)
6. Jung, E., Elmallah, E.S., Gouda, M.G.: Optimal dispersal of certificate chains.

In: Proceedings of the 18th International Symposium on Distributed Computing
(DISC ‘04), Springer-Verlag (2004)

7. Gouda, M.G., Jung, E.: Certificate dispersal in ad-hoc networks. In: Proceedings
of the 24th International Conference on Distributed Computing Systems (ICDCS
‘04), IEEE (2004)

8. Gouda, M.G., Multari, N.: Stabilizing communication protocols. EEE Transactions
on Computers, Special Issue on Protocol Engineering 40 (1991) 448–458

9. Arora, A., Gouda, M.G.: Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering 19 (1993) 1015–1027

10. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems. In: Proceed-
ings of the 9th Annual ACM Symposium on Principles of Distributed Computing,
ACM (1990)

11. Arora, A., Gouda, M.G.: Distributed reset. In: Proceedings of the 22nd Interna-
tional Conference on Fault-Tolerant Computing Systems. (1990)

12. Chen, N.S., Yu, H.P., Huang, S.T.: A self-stabilizing algorithm for constructing
spanning trees. Inf. Process. Lett. 39 (1991) 147–151

13. Nielsen, S.P., Dahm, F., Lüscher, M., Yamamoto, H., Collins, F., Denholm, B.,
Kumar, S., Softley, J.: Lotus notes and domino r5.0 security infrastructure revealed
(1999)

On the Possibility and the Impossibility of
Message-Driven Self-stabilizing

Failure Detection�

Martin Hutle and Josef Widder��

Technische Universität Wien, Embedded Computing Systems Group 182/2,
Treitlstraße 3/2, A-1040 Vienna (Austria)

{hutle, widder}@ecs.tuwien.ac.at

Abstract. This paper considers message-driven self-stabilizing imple-
mentations of unreliable failure detectors. We show that it is impossible
to give a deterministic implementation using just bounded memory if
there is no known upper bound on the number of messages that may be
in transit simultaneously. With relaxed assumptions we then introduce
two algorithms that solve the problem.

We use self-stabilization to show that message-driven and time-
driven semantics are different regarding expressiveness: Comparison with
work by Beauquier and Kekkonen-Moneta (1997) reveals that the dis-
cussed problem has a time-driven solution but cannot have a message-
driven one.

1 Introduction

Generally, the discipline of distributed computing considers sets of distributed
processes that execute algorithms where each execution consists of a sequence
of events. In the context of reliable agreement problems, much work [5,8,10]
focuses on timing constraints of these events; e.g. upper bounds between send and
receive events of messages between processes. Another issue is event generation.
We distinguish here two kinds of models, i.e., time-driven and message-driven.
In time-driven models, events occur due to passage of time and are triggered
by clocks or timers. In contrast, after a message-driven algorithm was started,
all events happen as immediate reaction to a received message while clocks are
either not part of the model or are just not employed by the algorithms.

Note, however, that the issues of timing constraints and event generation
are orthogonal. Consider, e.g., the well known failure detector (FD) based con-
sensus algorithms of [5] which work in an asynchronous model of computation
(often referred to as “time-free” model, reflecting the absence of timing bounds).
These algorithms must be attributed as time-driven as steps can be taken— in-
dependently of the presence or absence of messages in input buffers — just by
� The results were presented as brief announcement at ACM PODC 2005.

�� Supported by the Austrian bmvit FIT-IT project DCBA (proj. no. 808198), and by
the FWF project Theta (proj. no. P17757-N04).

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 153–170, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

154 M. Hutle and J. Widder

the passage of time respectively the progress of the program counter. It seems
obvious that solutions to the same problem can be achieved with message-driven
algorithms if (1) messages are immediately processed upon reception, (2) the FD
module triggers the consensus algorithm if new suspicions have been added and
(3) the FD implementation itself is message-driven. Most existing FD implemen-
tation in the literature [5,1,3] are not message-driven as they periodically send
messages (e.g. heartbeats). Exceptions are the message-driven FD implementa-
tions by Le Lann and Schmid [17,20].

We investigate whether time-driven and message-driven semantics are equiv-
alent regarding expressiveness; in other words whether the same set of prob-
lems have solutions in both models. We answer the question in the negative. To
this end, the problem of self-stabilizing [7,9] implementation of FDs is investi-
gated. FDs [5] provide processes with information about process crashes. The
first self-stabilizing (SS) FD implementations were introduced by Beauquier and
Kekkonen-Moneta [3]. Their implementations send messages with every clock
tick, in other words, they are time-driven. These algorithms satisfy the FD se-
mantics and stabilize within finite time in systems that obey a fair ordering
property which is in fact an abstract synchrony assumption: If a process p re-
ceives m messages from a process q, then p must receive at least one message
by any other correct process. In this paper we reconcile the work by Beauquier
and Kekkonen-Moneta [3] and the work by Le Lann and Schmid [17,20] and
investigate SS message-driven FD implementations.

SS FD implementations cannot be purely message-driven as inaccurate FD
information can never be corrected after a state was reached where no messages
are in transit such that no process will ever make a step afterwards. To over-
come such situations, several approaches can be taken. We could augment the
system model with the requirement that at least one message must always be in
transit. Since for the states where no messages are in transit convergence can-
not be ensured we could not argue that recovery from all states is guaranteed.
Moreover, when considering practical solutions this does not seem reasonable
(e.g. this does not cover system booting [19,20] where no messages are in transit
initially). Therefore we add a local deadlock prevention event, which however
has no timing constraints except that in every infinite run it happens an infinite
number of times, where the duration between two events is finite. In other words
this event cannot be used as a (even weak [11]) clock. Strictly speaking, using this
approach, our algorithms are not message-driven anymore. Our proofs, however,
reveal that they do not rely on the deadlock prevention event if messages are in
transit. In this paper we show that under certain circumstances it is impossible
to implement FDs in message-driven models even with such a deadlock preven-
tion event. Trivially, this result also holds for purely message driven systems.
Therefore, having this deadlock prevention event in the system model makes the
impossibility result even stronger as it holds not only for message-driven systems
but also for message-driven systems with deadlock prevention.

Message-Driven Self-stabilizing Failure Detection 155

Apart from self-stabilization, FDs were explored with regard to weak syn-
chrony assumptions [4,1,11]. In [1], e.g., eventually some link in the system must
have some unknown upper bound on communication delays. From a theoretical
viewpoint, such algorithms require unbounded memory as the timeout value has
to be stored (and increased on false suspicions). Assuming an unbounded time-
out variable for SS algorithms is problematic as an overly pessimistic timeout
might emanate from the unstable period and render the performance of such an
algorithm unusable, while decreasing timeout values may violate FD properties.
Therefore we focus on bounded memory FD algorithms under quite conservative
synchrony assumptions, i.e., there exists some upper bound on message end-to-
end delays that is different from the lower bound. For our implementations —
but not for the impossibility result— we require the lower bound to be greater
than 0.

Under these assumptions it turns out that the number of messages that can
be in transit at any given time becomes an important factor. Messages from the
unstable period could produce message patterns which look identical to correct
ones but which are much denser in the sense that the elapsed time of such a faulty
pattern is just a fraction of the duration of a corresponding correct pattern. We
show in Sect. 3 that this behavior leads to the impossibility of implementing
even the weakest FD [4] that allows solving consensus, i.e., the eventually strong
FD �S (as defined in [5]) in fully connected networks if the number of messages
that are simultaneously in transit is unknown. According to the reduction in
[4], this result also holds for the leader oracle Ω which gained some attention in
literature recently [1,15]. In fact our impossibility proof (of Theorem 1) can be
applied literally to show the impossibility of implementing Ω in our setting.

By devising two FD implementations that also work in sparse networks [15]
we show how to circumvent this impossibility result. The first algorithm in Sect. 4
copes with an unbounded number of messages but requires unbounded space.
Since we also want to give a practical solution, we devise a second algorithm
in Sect. 5 which requires just bounded space. This algorithm, however, requires
knowledge of M , an a priori known upper bound on the number of messages that
may be in transit simultaneously. Since real networks are finite, we consider this
upper bound as not very restrictive. For many networks, M can be analytically
derived as the capacity of links (determined by memory allocated to queues at
the network layers) is bounded as well. However, this bound has no influence
on the detection time of our algorithm and the space requirements are just
logarithmic in M . So even in networks where it is difficult to find a tight upper
bound, one can still use an extremely conservative one.

2 System Model

We consider a set Π = {1 . . . n} of processes, where each process is modeled as
a state machine. Processes communicate by message passing over links. An edge
λ = (p, q) of the communication graph G stands for a bidirectional link between p
and q. For our impossibility result, we assume a fully-connected graph and FIFO

156 M. Hutle and J. Widder

links in order to strengthen the result. For our algorithms, this can be dropped
as they work on non-FIFO sparse graphs. Let nb(p) be the set of neighbors of
process p (p �∈ nb(p)), and deg(p) = |nb(p)| be the number of neighbors.

Execution Model. Processes operate by performing steps . A step can be either a
message reception step or a deadlock prevention step. A message reception step
includes reception of one or more messages, the computational step of the state
machine and (optional) sending of messages. Formally, a message reception step
is defined by a = (p, sp, R, S, s′p), where R = {(msgr

1, λ
r
1), . . . , (msgr

k, λr
k)} and

S = {(msgs
1, λ

s
1), . . . , (msgs

� , λ
s
�)}, meaning p is in state sp, p receives messages

msgr
i from links λr

i and sends messages msgs
j over links λs

j , and s′p is the state
of p after execution of this step. We assume that processes are able to receive
several numbers of messages from incoming links concurrently, thus the λr

i are
not necessarily disjoint. The λs

j must be disjoint, however. A deadlock prevention
step is defined as a = (p, sp, S, s′p), meaning p is in state sp, sends messages S
and is in state s′p after the spontaneous deadlock prevention event.

Let m be the number of links in the system. For p ∈ Π , Sp denotes the
set of states of p. A configuration of the system is a vector of states of all
processes together with m lists, one list for every link, of messages on that
link. A configuration is denoted by C = (s1, s2, . . . , sn, Lλ1 , Lλ2 , . . . , Lλm) where
si ∈ Si and Lλj is a list of messages on λj . Let C be a configuration as above, and
a = (p, sp, R, S, s′p) be a message reception step. Then a is applicable to C, if p is
in state sp, and for every (msgr

j , λj) ∈ R it holds that msgr
j ∈ Lλj . A deadlock

prevention step a = (p, sp, S, s′p) is applicable if p is in sp. For every sp ∈ Sp such
a step exists, thus for every configuration there is a deadlock prevention step that
is applicable. Application of a step a to C yields the resulting configuration C′.

An execution, σ = C0 a1 C1 a2 . . . is a (finite or infinite) sequence, which
starts with some configuration C0 and where, for every i > 0, ai is applicable
to Ci−1 and results in Ci. An execution σ1 is applicable to a finite execution
σ0, if the last configuration of σ0 is equal to the first of σ1. A timed execution
is a sequence σ = C0 a1 t1 C1 a2 t2 . . ., where C0 a1 C1 a2 . . . is an execution and
ti ∈ IR is the real-time the step ai occurs, with ti ≤ ti+1 holding for all i.

Let σ = C0 a1 t1 C1 a2 t2 . . . be a timed execution. Then we say a message msg
is in transit from p to q at time t, if msg is in L(p,q) in the last configuration
before t (note that this does not include messages sent at t). In other words,
msg is in transit in the interval (ts, tr], if it is sent in a step at ts and received
in a step at tr. Further, we denote with Q(p, q, t) the set of messages which are
in transit from p to q or vice versa at time t, and with Q(p, t) =

⋃
q∈Π Q(p, q, t)

all messages in transit from or to p. Further, Q′(p, q, t) denotes the set of all
messages from p to q or vice versa after a step at time t.

Additionally we define vp(t) to be the value of variable v at process p at time
t before the step at time t, and v′p(t) to be the value of variable v at p and time
t after the step at time t, if there is a step at t.

Timing Model. Let tGST denote the time where our timing becomes correct in the
following way: A timed execution is timely, if for every message msg that is sent

Message-Driven Self-stabilizing Failure Detection 157

by ai there is some aj where msg is received, and τ− ≤ tj − ti ≤ τ+ if ti ≥ tGST
and tj < tGST + τ+ else. Moreover, every message that is in transit at time tGST
is received before tGST + τ+. The impossibility result holds for any system with
τ− < τ+. (This covers timing constraints as in (partially) synchronous models
or the Θ-Model.) Our algorithms assume that there is a known bound Ξ > Θ
on the ratio Θ = τ+/τ− while τ+ and τ− are not known in advance. We further
define ε = τ+ − τ− as the timing uncertainty.

To overcome the problem of deadlocks [13] in SS message passing systems,
we introduce the deadlock prevention event which fulfills the following fairness
property: for every time t and process p, there is a t′ > t where a deadlock
prevention step is taken at p; t′ − t is finite. For timing analysis we assume that
the deadlock prevention event is triggered at process p by time tGST + η, where
η is not known to processes. Note that the actual value of η has no influence on
the correctness of our algorithms.

Failure Model. Processes behave correctly until they crash. Crashes need not be
clean, i.e. may occur during a step. After a process has crashed it does not take
any step, messages sent to such a process are lost. A process is called correct
if it never crashes. At some unknown time tGST the timing stabilizes and the
system is in an arbitrary configuration. We call the time before tGST the unstable
period . Process crashes may occur at any time and processes do not recover after
tGST, i.e., crashes are permanent. We assume f < deg(p) for all p, where f is
the upper bound on the number of faulty processes after tGST.

Failure Detectors. An FD is a module at each processor that provides for some
applications information about other processes. We assume the FD outputs a list
of processes that are suspected to have crashed. If a process q is in the suspect
list of a process p at some time t, we say p suspects q. For our impossibility result
we consider the eventually strong FD �S as defined in [5]. It satisfies:

Strong Completeness. Eventually every process that crashes is permanently
suspected by all correct processes.

Eventual Weak Accuracy. There is a time after which some correct process
is never suspected by any correct process.

We now define an eventually perfect local FD. Such an FD has to satisfy the
same properties as an eventually perfect FD �P [5], but just for neighbors:

Local Completeness. Eventually every process that crashes is permanently
suspected by all correct neighbors.

Eventual Local Accuracy. There is a time after which correct processes are
never suspected by any correct neighbor.

The class of eventually perfect local FDs is denoted by �P�. We give implemen-
tations for this class in Sect. 4 and Sect. 5. Note that a �P� FD can be easily
transformed to a �P FD by an asynchronous SS algorithm: Every process just
has to broadcast the local lists of suspects. Every process then obtains the global
list of suspects by intersecting the most recent versions of the local lists.

158 M. Hutle and J. Widder

In concordance with the self-stabilization requirements [9], an SS algorithm
needs a set of legal executions which must be reached from any system state. We
define all executions that guarantee the properties of completeness and accuracy
as legal executions of an SS FD implementation.

3 Impossibility Result

In this section we show the impossibility of implementing message-driven SS
failure detectors with bounded memory. The intuitive argument is as follows:
Due to the bounded memory assumption, every algorithm has to reuse messages
and there are executions of this algorithm that run in cycles. Since processes have
no notion of real-time, they are not able to distinguish messages from a previous
cycle from new ones. Initiated by a sufficiently large number of messages from
the unstable period, it is hence possible that processes perceive a compressed
notion of time. Since the FD is message-driven, this will trigger the generation of
new messages according to this compressed time, which may go on perpetually.
Since the FDs run much faster than they should, incorrect suspicions will occur.
Due the self-stabilization and the bounded memory assumption they are not
able to recover from this and thus no process stops being suspected forever.

The formal argumentation assumes by ways of contradiction, that such an FD
algorithm exists and constructs a non-timely cyclic execution of this algorithm.
Such an execution must exist because of the bounded memory assumption. By
excessively delaying messages, the FD can be forced to suspect every process
at least once. By showing indistinguishableness from a timely execution with
messages from the unstable period we get the required contradiction.

Theorem 1. There is no deterministic message-driven self-stabilizing bounded
memory implementation of the eventually strong FD �S in system with ε > 0
and unknown channel capacity.

Proof. Assume by contradiction that such an algorithm A exists. We first con-
struct the following timed (but not timely; cf. Sect. 2) execution σ0 of A. Note
that the adversary can control the receive times of messages and the times of
the deadlock prevention events in such a run.

1. No process ever crashes. We start in a configuration C
(1)
1 . Our run proceeds

in lock-step, i.e., the algorithm receives and sends messages only at times
tk = kτ0, with τ− ≤ τ0 ≤ τ+. All timely messages are sent at times tk and
received at times tk+1. Note that at all times tk no messages are in transit
(except those received at time tk) such that the configuration following tk
is solely determined by the local states. The time between tk and tk+1 is a
round.

2. For every p ∈ {1, . . . , n}: Starting from a configuration C
(1)
2p−1, the adversary

fires the deadlock prevention event at p, and all messages from and to process
p are delayed (at least for one round), until some process suspects p. Such a
configuration is reached eventually, since such a behavior is indistinguishable

Message-Driven Self-stabilizing Failure Detection 159

from a situation where p has crashed, and thus by strong completeness, p
must eventually be suspected by some process. After that, the adversary
delivers all delayed messages and we end up in a configuration C

(1)
2p . Between

C
(1)
2p−1 and C

(1)
2p , p is suspected at least once. After C

(1)
2p , timing becomes

correct for one round, resulting in configuration C
(1)
2p+1 = C

(1)
2(p+1)−1.

Finally, every process was suspected at least once by another process, and
we end up in a configuration C

(2)
1

Δ= C
(1)
2n+1.

3. Starting repeatedly again from (2), we get chains of configurations C
(1)
1 . . .

C
(1)
2n . . . C

(i)
1 . . . C

(i)
2n . We call the run from C

(j)
i to C

(j)
i+1 a phase and the run

from C
(i)
1 to C

(i)
2n+1 an epoch.

4. Since every configuration C
(j)
1 depends only on the (finite) local states and

the messages sent in C
(j−1)
2n (which depend on the finite local states of

C
(j−1)
2n), there are only a finite number of configurations C

(j)
1 . Thus, there

are numbers u and v (u < v), such that C
(u)
1 = C

(v)
1 . Let E = u − v be the

number of epochs. Every epoch has obviously 2n phases, where the number
of rounds in phase φ of epoch e is R(e, φ), with 0 ≤ φ < 2n, 0 ≤ e < E. The
execution from C

(u)
1 to C

(v)
1 we refer to as cycle.

5. Since C
(u)
1 and C

(v)
1 are identical, the execution from C

(u)
1 to C

(v)
1 is applica-

ble to itself. σ0 is the execution that comprises Z cycles of the execution from
C

(u)
1 to C

(v)
1 , where Z has to be determined yet. The times tk which have

not been assigned yet are assumed such that σ0 starts at time t0 = tGST = 0.
σ0,∞ = σ0σ0 . . . is the infinite run composed by infinitely many iterations
of σ0. Note that in σ0,∞, for every process and every time t there is a time
t′ > t, where it is suspected by some other process.

We define k to be a unique round number in σ0 by the function k(z, e, φ, r) =
z

∑E−1
e′=0

∑2n−1
φ′=0 R(e′, φ′) +

∑e
e′=0

∑2n−1
φ′=0 R(e′, φ′) +

∑φ−1
φ′=0 R(e, φ′) + r.

It can easily be seen that k(z, e, φ, r) maps every tuple (z, e, φ, r) one-to-one
to a value k, thus we can define the inverse functions z(k), e(k), φ(k) and r(k).
The times the algorithms start round r in phase φ of epoch e and cycle z is given
by t(z, e, φ, r) = tk(z,e,φ,r) = k(z, e, φ, r)τ0. The total number of rounds in σ0 is
Rtotal = Z

∑E−1
e=0

∑2n−1
φ=0 R(e, φ).

Now we introduce a compressed run σ1 that is indistinguishable from σ0 for
all processes. To that end, we define a function that maps all times tk to times t′k,
such that t′Rtotal

− t′0 = τ−, whereas the temporal order of the steps is preserved.
Since the processes perceive only the message pattern and have no other time
information, processes in the compressed execution σ1 behave in the same way
as in σ0. The time transformation function is given by:

t′k
Δ= f(tk(z,e,φ,r)) =

(
2nEz + 2ne + φ +

r

R(e, φ)

)
γ, (1)

160 M. Hutle and J. Widder

where γ
Δ= τ−

2nEZ gives the compressed length of a phase. Additionally, we choose
Z ≥ τ−

2nEε , which implies γ ≤ ε. The temporal order of the message delivery
times is preserved, if f(tk) is a monotonically increasing function in tk:

Lemma 1. The function f(tk) = (2nEz + 2ne + φ + r
R(e,φ))γ is monotonically

increasing in tk.

Proof. Obvious from (1) and the fact that r
R(e,φ) < 1, φ < 2n, and e < E. ��

We now show that σ1,∞ = σ1σ1 . . . is indistinguishable from an infinite and
timely execution σ2,∞ = σ2,0σ2,1 . . ., if sufficiently many messages are in the
links at tGST = 0. The argument is as follows. During a single execution σ1 all
messages sent in σ1 are received in σ1. The following lemma constructs identical
executions σ2,i where messages from σ2,i−1 are received in σ2,i while the new
messages are received in σ2,i+1. Locally, temporal order of message receptions is
maintained; thus σ1 and σ2,i are indistinguishable.

Lemma 2. For all processes, σ1 is indistinguishable from an execution σ2,i that
runs from iτ− to (i + 1)τ−, for any i ≥ 0. At the end of σ2,i+2 no messages
from σ2,i are in transit. For i > 0, every message that is received in σ2,i satisfies
τ− ≤ tr − ts ≤ τ+.

Proof. By induction on i. For i = 0, recall that σ0 has 2nEZ phases, and the
duration of each phase is γ; thus t′Rtotal

= τ−. Hence, for every time t′k a process
receives a message in σ1, the adversary delivers an identical message from the
instable period in σ2,0 at t′k. Since all messages sent in σ2,0 are delivered after
τ− and thus not within σ2,0, σ2,0 is indistinguishable from σ1.

For the induction step i > 0, we assume that the lemma holds for i − 1. For
every message that is sent at t′k in σ1 and received at t′� in σ1, by the induction
hypothesis there is a send event at time ts = (i − 1)τ− + t′k. The adversary
delivers this message at time tr = iτ− + t′�. To see that this message is indeed
timely, recall that —by the construction of σ0 — every message is delivered in
the same phase in which it was sent, and by our compression function, the
length of each phase in σ1 is of length γ ≤ ε. Thus, t′� − t′k ≤ ε, and therefore
tr −ts = (iτ−+t′�)−((i−1)τ−+t′k) ≤ τ+. Since both, t′k and t′� are nonnegative,
tr − ts = (iτ− + t′�) − ((i − 1)τ− + t′k) ≥ τ− follows trivially.

As there are no messages in transit from σ2,i−2, and all messages from σ2,i−1
are delivered in σ2,i on times iτ−+t′k, the algorithm indeed behaves as in σ1. ��

Note that in σ2,0 only messages from the unstable period are received, and all
other messages fulfill τ− ≤ tr − ts ≤ τ+. Thus, the execution σ2,∞ is timely and
indistinguishable from σ1,∞, which is indistinguishable from σ0,∞. In the lat-
ter, however, no correct process ever stops from being suspected. The maximum
number of messages (per process) from the unstable period is M = n ·Rtotal and
thus only depends on the algorithm, i.e., for any algorithm there is a channel
capacity where no correct process may stop from being suspected forever, al-
though all processes are correct, which contradicts eventual weak accuracy. ��

Message-Driven Self-stabilizing Failure Detection 161

1 state variables
2 ∀q ∈ nb(p) : lastmsgp[q] ∈ IN
3

4 if received (p, k) from q
5 if k > lastmsgp[q]
6 lastmsgp[q] ← k
7 if k = maxr∈nb(p){lastmsgp[r]} and
 ∃s, s
= q : lastmsgp[s] = lastmsgp[q]
8 suspect {r ∈ Π | k − lastmsgp[r] ≥ Ξ}
9 send (p, k + 1) to all neighbors
10

11 if received (q, k) from q
12 send (q, k) to q
13

14 on deadlock-prevention-event do
15 send (p, maxq∈nb(p){lastmsgp[q]} + 1) to all neighbors

Fig. 1. Algorithm for process p with no bounds on number of messages on a link

4 Unbounded Link Capacity

In this section we describe an implementation of �P� which handles an un-
bounded number of messages on the links but requires unbounded memory.

The algorithm is given in Fig. 1. Process p exchanges (p, k) messages with
its neighbors, where k is an integer. When a neighbor q receives such a mes-
sage, q just returns it to p (lines 11-12). For every neighbor q, p holds a vari-
able lastmsgp[q], where it stores the highest integer k received in a (p, k) reply
from q. We also use lastmsgp,q for lastmsgp[q]. The highest value among all
lastmsgp,q determines the round for process p. Thus we define roundp(t)

Δ=
maxq∈Π{lastmsgp,q(t)} and round′p(t) respectively. Every time a new round is
reached (by receiving a message (p, k) such that k > roundp), p sends a (p,
roundp + 1) message to all neighbors.

The “fastest neighbor” determines the progress, i.e., roundp + 1 is started
when the first neighbor returns the (p, roundp) message to p. By our timing
model, this requires at least 2τ−. The reply of the slowest neighbor requires at
most 2τ+. At this time, roundp has reached at most 2τ+/2τ− < Ξ additional
rounds. Thus, for every correct neighbor roundp − lastmsgp,q is less than Ξ,
whereas for every faulty neighbor p eventually stops updating lastmsgp,q. So,
the processes q with roundp − lastmsgp,q ≥ Ξ (line 8) are suspected.

From time to time the last message is resent to every neighbor by line 14 in
order to prevent a deadlock when messages are lost during the unstable period.
Note that this has no influence on the operation of the algorithm, since all
messages with k ≤ lastmsgp,q are dropped, therefore only the first message that
is received has an influence on the behavior of p.

The proof follows the following observation: All messages from the unstable
period are received by time τ+ and responses to these message by 2τ+. After

162 M. Hutle and J. Widder

this there cannot be messages in transit greater than roundp for all processes p.
That is, from then on the increase from roundp = i to i + 1 takes at least 2τ−

which suffices to detect faults. We start with some preliminary lemmas.

Lemma 3 (Monotonicity). After tGST, roundp(t) is monotonically increasing
with time t, i.e., tGST ≤ t1 ≤ t ⇒ roundp(t1) ≤ roundp(t) ≤ round′p(t).

Proof. Obvious, since roundp is the maximum of all lastmsgp,q, and by lines 5
and 6 lastmsgp,q is monotonically increasing. ��

Lemma 4 (Progress). There is a time t, tGST ≤ t < tGST + max{2τ+, η},
such that at time t, p broadcasts (p, round′p(t) + 1).

Proof. At time tGST we have to distinguish two cases:
(1) There is at least one neighbor q of p, such that at least one message (p, �),
with roundp(tGST) < � is in Q(p, q, t). Let (p, k) be the first of them to be
received by p at some time t ≥ tGST. Obviously, t < tGST + 2τ+. Since by
assumption this is the first message after tGST that changes roundp, we have
roundp(t) = roundp(tGST). Thus, lastmsgp,q(t) ≤ roundp(t) < k, p executes
lines 6 and 9 and hence broadcasts (p, round′p(t) + 1), with round′p(t) = k.
(2) No such message exists. Then by time t = tGST + η, line 15 is executed, and
also (p, roundp(t) + 1) is broadcast.

Thus, by time tGST + max(2τ+, η) the required message is broadcast. ��

Lemma 5 (Stabilization). For every message (p, k), which is received by p at
some time t ≥ tGST + 2τ+, it holds that k ≤ roundp(t) + 1.

Proof. Since sending a message to a neighbor and receiving the answer takes at
most 2τ+, there is a time t1 ≥ tGST when p has broadcast (p, k). However, since
we are after tGST, k must be equal to round′p(t1)+1, since p can broadcast only
(p, round′p(t1)+1) messages (lines 9,15). By Lemma 3, roundp is monotonically
increasing with time. Therefore from t ≥ t1 follows round′p(t)+ 1 ≥ roundp(t)+
1 ≥ roundp(t1) + 1 = k. ��

Let tstable
Δ= tGST+max(2τ+, η), which is the time by which we have progress

(Lemma 4) and correct message pattern (Lemma 5).

Lemma 6 (Fastest Progress). Let process p broadcast (p, k) at some time
t ≥ tstable for the first time. Then p does not broadcast (p, k + �) before t+2�τ−.

Proof. By induction on �. For � = 1 assume by contradiction that p broadcasts
(p, k+1) before time t+2τ−. If (p, k+1) is sent by line 15 it was sent also by line
9 before (since after tstable by Lemma 4 at least one message was sent by line 9),
which would not be the first time. Since (p, k + 1) is sent by line 9, p received a
(p, k) message which was sent before time t + τ− by some q (as response – line
11) and before time t by p. Contradiction.

Now assume p broadcasts (p, k+�−1) not before t+2(�−1)τ− the first time.
By the same argument, p does not broadcast (p, k + �) before time t +2�τ−. ��

Message-Driven Self-stabilizing Failure Detection 163

Lemma 7 (Slowest Progress). Let correct process p broadcast (p, k) at some
time t > tstable for the first time. p broadcasts (p, k + �) by t + 2�τ+.

Proof. By induction on �. Since p broadcasts (p, k) at time t, all neighbors of p
receive this message by time t+τ+ and every correct neighbor (since deg(p) > f
there exists at least one) returns it. These messages are received by p by time
t+2τ+. Consider the time of the reception of the first of these messages. Because
of Lemma 5 (note that k = round′p(t) + 1), p receives no message (p, k′) with
k′ > k by t + 2τ+, thus p broadcasts (p, k + 1).

For � > 1, assume p broadcasts (p, k) by time t + 2(� − 1)τ+. By the same
argument, p broadcasts (p, k + �) by time t + 2�τ+. ��

Lemma 8. For every time t > tstable + 2τ+Ξ and every correct neighbor q of
correct process p, it holds that round′p(t) − lastmsg′p,q(t) < Ξ.

Proof. Since all variables are non-decreasing, the condition could be only violated
by increasing roundp. So we consider only times t, where round′p(t) > roundp(t).
By Lemma 5 we have round′p(t) = roundp(t)+1. By Lemmas 4, 5 and 6, a mes-
sage (p, round′p(t) − Ξ + 1) was broadcast by p at time ts ≤ t − 2τ−Ξ, by
Lemma 7, ts > tstable, so this message really exists. The reply to this mes-
sage is received from every correct neighbor q by time tr ≤ ts + 2τ+, thus
lastmsg′p,q(tr) ≥ round′p(t) − Ξ + 1 > round′p(t) − Ξ. Because of Ξ > Θ we
have tr ≤ ts + 2τ+ ≤ t − 2τ−Ξ + 2τ+ ≤ t. Since lastmsg′p,q is monotonically
increasing it follows that lastmsg′p,q(t) ≥ lastmsg′p,q(tr). Hence we derive our
desired condition round′p(t) − lastmsg′p,q(t) < Ξ. ��

Theorem 2 (Local Completeness). Eventually every non-correct neighbor of
p is suspected by p.

Proof. Let tcrash be the time q crashes, and t = max{tcrash, tGST}. Then no
message from q to p is received after t + τ+. After this, lastmsgp,q ≤ roundp

remains unchanged. By Lemma 7, roundp reaches roundp(t) + Ξ by time
max{tcrash + τ+, tstable}+ 2Ξτ+. Since roundp is nondecreasing, q remains sus-
pected. ��

Theorem 3 (Eventual Local Accuracy). Eventually p stops suspecting every
correct neighbor of p.

Proof. Follows directly from Lemma 8 and line 8 of the algorithm. ��

Corollary 1. The algorithm in Fig. 1 is an SS implementation of �P�.

After stabilization, a crashed process is suspected Ξ rounds after it crashed,
i.e., the worst case failure detection time is 2Ξτ+.

5 Bounded Link Capacity

We now provide an FD implementation that requires an a priori known bound
on the number of messages which can be in transit at the same time from or

164 M. Hutle and J. Widder

to a single process. In contrast to the previous algorithm, this one requires just
bounded memory size. Hence, this result is of practical interest: Real computers
have bounded memory, which is not only used to store variables of our algo-
rithms, but also to store messages in various queues. Since queues— which are
the significant parts of links— essentially determine the link capacity, the as-
sumption that the number of messages is bounded is reasonable.

The algorithm given in Fig. 2 works similar to the one in Sect. 4. However,
since the integers are bounded, we need to wrap-around the round number.
We call such a cycle a phase. To avoid that messages from previous phases
interfere with the current one, we use phase numbers. Since the range of the
phase numbers has to be bounded as well, we have to ensure that there are
sufficiently many distinct phase numbers such that no interference is possible.
We show that if there are at most M messages in all links of a process, M + 2
phases are sufficient to ensure stabilization. The idea behind this is that there
exists at least one phase which cannot be shortened by faulty messages from the
unstable period. In contrast to the algorithm in Sect. 4 this algorithm broadcasts
only on a phase switch, whereas the previous one broadcasts every round.

1 state variables
2 phasep ∈ {0, . . . , M + 1}
3 ∀q ∈ nb(p) : lastmsgp[q] ∈ {0, . . . , Ξ}
4

5 if received (p, ph, k) from q
6 if ph = phasep and k > lastmsgp[q]
7 if k < Ξ
8 lastmsgp[q] ← k
9 send (p, phasep, k + 1) to q
10 else
11 suspect {r ∈ Π | lastmsgp[r] = 0}
12 phasep ← (phasep + 1) mod (M + 2)
13 ∀r ∈ nb(p) : lastmsgp[r] ← 0
14 send (p, phasep, 1) to all neighbors
15

16 if received (q, ph, k) from q
17 send (q, ph, k) to q
18

19 on deadlock-prevention-event do
20 ∀q ∈ nb(p) : send (p, phasep, lastmsgp[q] + 1) to q

Fig. 2. Algorithm for process p with known upper bound on number of messages

By our assumption, |Q(p, tGST)| ≤ M < ∞ for all processes p. For any phase
number ph we further define next(ph) Δ= (ph + 1) mod (M + 2) and prev(ph) Δ=
(ph + M + 1) mod (M + 2).

Message-Driven Self-stabilizing Failure Detection 165

Lemma 9. For every process p, in any execution of our algorithm, there exists
at least one phase number ph0, such that no message (p, ph0, k) is in Q(p, tGST)
and ph0 �= phasep(tGST).

Proof. Obviously, |Q(p, tGST)| = x ≤ M . At time tGST, process p can be in one
phase only. The number of phase numbers is M + 2 > x + 1 such that at least
one phase number remains. ��

We now give two properties that define the legitimate states for process p.
The stability property ensures that there are no faulty messages in transit. The
progress property guarantees that the system is not deadlocked, i.e., that there
are sufficiently many messages in transit to keep the FD working.

Definition 1 (Stability). PS(p, t) holds for process p at time t iff there is no
next(phasep(t)) message in transit. Formally,
PS(p, t) ≡ �∃k : (p, next(phase′p(t)), k) ∈ Q(p, t)

Definition 2 (Progress). PP(p, t) holds for process p at time t iff there is at
least one correct neighbor q of p, from or to which a message for the current
phase with k > lastmsgp,q(p, t) is in transit. Formally,
PP(p, t) ≡ ∃q ∈ (C ∩ nb(p)) ∃k > lastmsgp,q(p, t) : (p, phasep(t), k) ∈ Q(p, q, t)

We start by showing closure of progress PP.

Lemma 10. If there is a time t0 ≥ tGST, where PP(p, t0) holds, then PP(p, t)
holds also for all times t > t0. Formally,
∃t0 ≥ tGST : PP(p, t0) ⇒ ∀t > t0 PP(p, t)

Proof. Assume by contradiction that there is a time t > t0, where PP(p, t) does
not hold for the first time. Since by assumption the predicate held before that,
for some non-faulty q, either lastmsgp,q(t) �= lastmsg′p,q(t) or (p, phasep(t), k) /∈
Q′(p, q, t). In both cases, p has received a (p, phasep(t), k′) message with k′ >
lastmsgp,q(t) and thus sends either a (p, phase′p(t), lastmsg′p,q(t) + 1) or a (p,
phase′p(t), round′p(t)+1) message and sets lastmsgp,q = 0. In both cases PP(p, t)
holds. Contradiction. ��

Lemma 11. For all times t ≥ tGST + η, PP(p, t) holds.

Proof. By time tGST + η, p sends a (p, phasep, lastmsgp,q + 1) to every neighbor
q. Since f < deg(p), at least one of them is non-faulty and thus PP holds for p
at this time. By Lemma 10 after that PP holds forever. ��

We have seen that our algorithm stabilizes such that PP always holds after
bounded time after tGST. We now turn our attention to the PS property and
start with some preliminary lemmas.

Lemma 12 (Fastest Progress). Assume p starts phase ph = phasep(t) by
broadcasting (p, ph, 1) at time t > tGST, and PS(p, t) holds. Then p does not
broadcast (p, next(ph), 1) by time t + 2τ−Ξ > t + 2τ+.

166 M. Hutle and J. Widder

Proof. Since PS(p, t) holds, no messages (p, ph, �) are in transit at t. Therefore,
if p receives a (p, ph, �) message for 1 ≤ � ≤ Ξ after time t, it is a correct
response to one of p’s (p, ph, �) messages. The minimum time of such a round
trip is 2τ−. By line 9 and line 7, the next phase is started after Ξ round trips.
Thus, not before t + 2τ−Ξ. Since Ξ > Θ (cf. Sect. 2) t + 2τ−Ξ > t + 2τ+. ��

Lemma 13 (Slowest Progress). Assume p starts phase ph by broadcasting
(p, ph, 1) at time t. Then p broadcasts (p, next(ph), 1) by t + 2τ+Ξ.

Proof. Note that p broadcasts (p, next(ph), 1) if it receives a (p, ph, Ξ) message
from one of its neighbors and is still in phase ph. If p is no more in phase ph
we are done, so it remains to show that p receives a (p, ph, Ξ) message by time
t + 2τ+Ξ. Sending a message to a neighbor and back requires at most time
2τ+. By line 9 and line 7, the next phase is started after Ξ round trips. Thus p
receives (p, ph, Ξ) by time t + 2τ+Ξ. ��

Lemma 14. Assume phasep(t) = ph. Then phasep(t1) = prev(ph) for some
times t1 > t > tGST only if p was in all phases in the time interval [t, t1].

Proof. By line 12 of the algorithm, p changes its phase only to next(phasep(t))
and thus has to adopt all other values before reaching prev(phasep(t)). ��

Lemma 15. PS(p, t) holds at time t = tGST + 2τ+.

Proof. We have to show that no messages (p, �, k) for � = next(phasep(t)) and
some k are in transit at time t = tGST + 2τ+. Obviously, no message which is
in transit at time t was already in transit at time tGST. Moreover, no message
which is in transit at time t is a reply from one of p’s neighbors to a faulty
message which was in Q(p, tGST) since all these responses must be received by p
before t. Thus, message (p, �, k) can only be in transit at time t if p was in phase
� at some time t1, tGST ≤ t1 ≤ t. It remains to show that this is not possible.

As p is in phase prev(�) at time t it must, by Lemma 14, have been in all
phases (0..M +1) between t1 and t, thus there must be some time t2, t1 ≤ t2 ≤ t
such that phasep(t2) = prev(ph0), i.e., phase ph0 from Lemma 9 was started
then. Thus PS(p, t2). By Lemma 12 this phase can only be terminated after
t2 + 2τ+ ≥ t which is a contradiction to p being in phase prev(�) at time t. ��

It remains to show closure, i.e., if PS is reached once, it holds forever.

Definition 3. We define tph(p, t, ph) as the first time after t, where p reaches
phase ph. Formally, tph(p, t, ph) Δ= min{t′ > t | phasep(t′) = ph ∧ �∃t′′(t < t′′ <
t′ ∧ phasep(t′′) = ph)}.

Lemma 16. From PS(p, t) where t ≥ tGST follows that PS(p, t′) holds for all
times t′, t ≤ t′ < tph(p, t, next(phasep(t)).

Proof. Since phasep remains unchanged, no spontaneous messages are generated
after tGST and p sends phasep(t) messages only. ��

Message-Driven Self-stabilizing Failure Detection 167

Lemma 17. Let PS hold at p and time tph(p, t, ph) where t ≥ tGST. Then
PS(p, t′) holds at time t′ = tph(p, t, next(ph)).

Proof. By Lemma 12 p terminates phase ph after tph(p, t, ph)+2τ+. All messages
which are in transit to p at time tph(p, t, ph) are received by time tph(p, t, ph)+τ+.
All messages for other phases than ph are ignored by p (and hence no messages
are sent). All messages for phases other than ph which are in transit from p to
its neighbors are answered by them by line 17. The answers are received by p by
tph(p, t, ph) + 2τ+ and ignored as well since p is still in phase ph. Thus, no mes-
sages for other phases than ph are in transit at time t′. Since next(next(ph)) �= ph
the lemma holds. ��

Lemma 18. After time tstable = tGST + 2τ+, PS holds at all phase switches.

Proof. By Lemma 15, PS(p, t) holds at time t = tGST + 2τ+. By Lemma 16,
PS(p, t′) holds for all times t′, t ≤ t′ < tph(p, t, next(phasep(t))). From an
inductive application of Lemma 17 it follows that PS holds at all phase switch
times after that. ��

From these lemmas it follows that after some time, all phases are sufficiently
long to timeout processes. Thus we can show the FD properties.

Theorem 4 (Local Completeness). Eventually every non-correct neighbor of
p is suspected by p.

Proof. Assume neighbor q of p has crashed. By Lemma 11, PP holds by time
tGST + η. Note that every message (p, ph, k) from q, with k > lastmsgp,q and
ph = phasep causes either a message (p, ph, k + 1) (for k < Ξ) or a (p, ph + 1, 1)
message. Consequently, eventually p reaches k = Ξ and switches to the next
phase (lines 11-14). When p reaches k = Ξ in the next phase, lastmsgp,q = 0,
since there was no message from q. According to line 11, p suspects q. ��

Theorem 5 (Eventual Local Accuracy). Eventually p stops suspecting every
correct neighbor of p.

Proof. By Lemma 18 and Lemma 12 all phases that are started after tGST +2τ+

are longer than 2τ+. This is long enough for all answers of correct process p’s
correct neighbors q to p’s (p, ph, 1) message to be received by p before it executes
line 11 at some time t. Thus, lastmsgp,q(t) > 0 for every correct neighbor q when
p executes line 11 such that no correct processes will ever be suspected by p. ��

Corollary 2. The algorithm in Fig. 2 is an SS implementation of �P�.

When a process crashes in a phase (after replying to at least one message) it
is suspected at the end of the next phase. Thus, the worst case failure detection
time is (4Ξ − 1)τ+ once the FD has stabilized.

168 M. Hutle and J. Widder

6 Discussions

This paper is in the context of distributed fault-tolerant SS algorithms [12,2,18,6]
and considers the implementation of message-driven SS failure detectors. In
contrast to time-driven algorithms [3,10], where local clocks can be employed
to periodically send messages independently of the rate of received messages,
message-driven algorithms can only react to received messages. The time be-
tween send events thus depends solely on the incoming message pattern. Due
to arbitrary system states perceived time can be compressed arbitrarily such
that the message pattern provides unreliable time information. This leads to our
impossibility result in Sect. 3.

However, there are ways to circumvent the impossibility: We presented a sim-
ple solution, which requires unbounded memory, an assumption that is not rea-
sonable when considering SS algorithms for implementations in real systems. We
therefore presented a practical solution in Sect. 5 which requires only bounded
memory but assumes a known bound on the channel capacity. This solution can
be used in real systems, as the memory requirement of the algorithm is just
log(M), M being a bound on the number of messages simultaneously in transit.

In [16] we devised two other algorithms which — in conjunction with the
timed algorithms in [3] — contribute to the exploration of alternatives for cir-
cumventing our impossibility result: We show that the problem can be solved
(1) by randomization and (2) in systems without timing uncertainty (where
τ+ = τ−). The randomized algorithm is a variant of the algorithm in Sect. 5
with only 3 different phases where upon phase switch the next phase number is
determined via a coin toss. The algorithm stabilizes with high probability.

Howell, Nesterenko, and Mizuno [14] discussed finite state SS protocols. The
states include the messages that are in the buffer, and they consider a model
where a message is lost if a process tries to write into a full buffer (belonging to a
link between two processes). In the executions we construct in the impossibility
proof of Sect. 3, the adversary delivers the messages in such a way that this does
not happen —and we give the size of the buffer such that the adversary can do
so. The algorithm in Sect. 4 has infinite buffers, and in concordance with the
result in [13], it requires infinite legitimate states as some round number is ever
increasing. Regarding our algorithm in Sect. 5 we consider a weaker adversary as
in [14]. We assume that the adversary is fair in that it never forces an algorithm
to put a message into a full outgoing buffer. Finding an algorithm that handles
the adversary of [14] is an open topic.

Our results relate time-driven and message-driven solutions of agreement
problems. We have shown that for the one very specific problem of SS failure
detector implementations there is a difference regarding solvability. Hence, sys-
tem models that allow just message-driven algorithms are weaker than models
that allow time-driven algorithms. These results just show how much clocks or
timers help when invalid message patterns have to be tolerated.

Acknowledgments. We are grateful to Felix Freiling for valuable discussions on
the subject and to an anonymous reviewer for pointing out the relation of our

Message-Driven Self-stabilizing Failure Detection 169

work to [14]. Bettina Weiss helped us improving the presentation of the results
by patiently reading and commenting earlier drafts of this paper.

References

1. Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg.
On implementing Omega with weak reliability and synchrony assumptions. In Pro-
ceeding of the 22nd Annual ACM Symposium on Principles of Distributed Com-
puting (PODC’03), 2003.

2. Efthymios Anagnostou and Vassos Hadzilacos. Tolerating transient and permanent
failures (extended abstract). In Proceedings of the 7th International Workshop on
Distributed Algorithms (WDAG’93), volume 725 of LNCS, pages 174–188, Lau-
sanne,Switzerland, Sept 1993.

3. Joffroy Beauquier and Synnöve Kekkonen-Moneta. Fault-tolerance and self-
stabilization: Impossibility results and solutions using self-stabilizing failure de-
tectors. International Journal of Systems Science, 28(11):1177–1187, 1997.

4. Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving consensus. Journal of the ACM, 43(4):685–722, June 1996.

5. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, March 1996.

6. Ariel Daliot, Danny Dolev, and Hanna Parnas. Linear time byzantine self-
stabilizing clock synchronization. In Proceedings of the 7th International Con-
ference on Principles of Distributed Systems, Dec 2003.

7. Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
munications of the ACM, 17(11):643–644, 1974.

8. Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism
needed for distributed consensus. Journal of the ACM, 34(1):77–97, January 1987.

9. Shlomi Dolev. Self-Stabilization. MIT Press, 2000.
10. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence

of partial synchrony. Journal of the ACM, 35(2):288–323, April 1988.
11. Christof Fetzer, Ulrich Schmid, and Martin Süßkraut. On the possibility of consen-

sus in asynchronous systems with finite average response times. In Proceedings of
the 25th International Conderence on Distributed Computing Systems (ICDCS’05),
Columbus, Ohio, USA, 2005.

12. Felix Gärtner. On crash failures and self-stabilization. Presentation at Journées
Internationales sur l’auto-stabilisation, CIRM, Luminy, France, October 2002.

13. Mohamed G. Gouda and Nicholas J. Multari. Stabilizing communication protocols.
IEEE Transactions on Computers, 40(4):448–458, April 1991.

14. Rodney R. Howell, Mikhail Nesterenko, and Masaaki Mizuno. Finite-state self-
stabilizing protocols in message-passing systems. Journal of Parallel and Distrib-
uted Computing, 62:792–817, May 2002.

15. Martin Hutle. On omega in sparse networks. In Proc. 10th International Sym-
posium Pacific Rim Dependable Computing (PRDC’04), Papeete, Tahiti, March
2004.

16. Martin Hutle and Josef Widder. Self-stabilizing failure detector algorithms. In
Proc. IASTED International Conference on Parallel and Distributed Computing
and Networks (PDCN’05), Innsbruck, Austria, February 2005.

17. Gérard Le Lann and Ulrich Schmid. How to implement a timer-free perfect failure
detector in partially synchronous systems. Technical Report 183/1-127, Depart-
ment of Automation, Technische Universität Wien, January 2003.

170 M. Hutle and J. Widder

18. Mikhail Nesterenko and Anish Arora. Tolerance to unbounded byzantine faults.
In Proceedings of the 21st IEEE Symposium on Reliable Distributed Systems
(SRDS’02), pages 22–29, Suita, Japan, 2002. IEEE Computer Society.

19. Josef Widder. Booting clock synchronization in partially synchronous systems.
In Proceedings of the 17th International Symposium on Distributed Computing
(DISC’03), volume 2848 of LNCS, pages 121–135, Sorrento, Italy, October 2003.
Springer Verlag.

20. Josef Widder, Gérard Le Lann, and Ulrich Schmid. Failure detection with booting
in partially synchronous systems. In Proceedings of the 5th European Dependable
Computing Conference (EDCC-5), volume 3463 of LNCS, pages 20–37, Budapest,
Hungary, April 2005. Springer Verlag.

Approximation of Self-stabilizing Vertex Cover
Less Than 2

Jun Kiniwa

Department of Applied Economics, University of Hyogo,
8-2-1 Gakuen nishi-machi, Nishi-ku, Kobe-shi 651-2197, Japan

Phone: +81-78-794-5844, Fax: +81-78-794-6166
kiniwa@econ.u-hyogo.ac.jp

Abstract. A vertex cover of a graph is a subset of vertices such that
each edge has at least one endpoint in the subset. Determining the min-
imum vertex cover is a well-known NP-complete problem in a sequential
setting. Several techniques, e.g., depth-first search, a local ratio theorem,
and semidefinite relaxation, have given good approximation algorithms.
However, some of them cannot be applied to a distributed setting, in
particular self-stabilizing algorithms. Thus only a 2-approximation so-
lution based on a self-stabilizing maximal matching has been obviously
known until now. In this paper we propose a new self-stabilizing vertex
cover algorithm that achieves (2−1/Δ)-approximation ratio, where Δ is
the maximum degree of a given network. We first introduce a sequential
(2 − 1/Δ)-approximation algorithm that uses a maximal matching with
the high-degree-first order of vertices. Then we present a self-stabilizing
algorithm based on the same idea, and show that the output of the al-
gorithm is the same as that of the sequential one.

1 Introduction

Self-stabilization is the most fundamental concept of automatic recovery in dis-
tributed systems. A lot of researchers have paid attention to its fault tolerance.
A transient fault is the fault that only perturbs the system state, but not the
program code. Self-stabilizing algorithms tolerate the transient fault in such a
way that the system eventually converges to a legitimate state without any aid
of external actions. Thus the algorithms must be designed to run for any initial
system state. The execution of self-stabilizing algorithms is guaranteed to repair
faulty states and to keep legitimacy thereafter.

Given an undirected graph G = (V, E), a vertex cover is a subset C ⊆ V such
that each edge e ∈ E has at least one endpoint in C. It is often required to find
the minimum C, while it is known to be NP-complete[4]. Instead of finding an
exact solution, many approximation algorithms have been developed[7,13,15,17].
Though the problem has been primary considered in sequential algorithms, it also
has a wide application to distributed systems, e.g., monitoring link failures[1],
placement of agents[11], and managing vector clocks[5]. The placement of such
agents or processes cannot be designed in a centralized fashion for large-scale

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 171–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

172 J. Kiniwa

networks. So it is significant to obtain a good approximation distributed algo-
rithm. Furthermore, we would like to add the property of fault-tolerance. Hence
our chief concern is to construct a self-stabilizing and as small vertex cover
as possible.

Some approximation techniques used in sequential algorithms cannot be ap-
plied to distributed algorithms because only local computation is allowed. There,
however, seem to be at least two applicable methods — a maximal matching and
covering a high-degree vertex first. A maximal matching M is a maximal set of
edges with no two of them share the same vertex. It is known that a set of both
endpoints of every edge in M form a vertex cover with at most twice the opti-
mum. On the other hand, it is also well-known that the worst example of the
greedy method, i.e., covering a high-degree vertex first, is O(log n) times as large
as the optimum. We, however, do not often experience such worst cases when
using the greedy method. Instead, it sometimes works better than the maximal
matching approximation that always covers both endpoints of the matched edges
even if it is not necessary. Hence we combine the greedy method with the max-
imal matching to ensure the approximation ratio, that is, a maximal matching
with the high-degree-first order of vertices.

From the sequential point of view, there have been many approximation
approaches, depth-first search[15], a local-ratio theorem[17], semidefinite relax-
ation [7], and a graph theoretical algorithm[13]. However, H̊astad[9] recently
showed that there is no (7/6 − ε)-approximation algorithm for the problem for
any ε > 0 unless P = NP . From the distributed point of view, there does
not exist so much work for the vertex cover problem. The significance of this ap-
proach, however, has been continuing to grow since large-scale networks, e.g., In-
ternet, mobile ad hoc and sensor networks emerged. Recently, a 2-approximation
(weighted) vertex cover algorithm has been proposed[6]. The approximation ra-
tio can be achieved by including matched vertices when a maximal matching
is determined. As a part of the vertex cover, algorithms for finding a maximal
matching were well-studied. The algorithm presented by Hanckowiack et al.[8]
computes a maximal matching in O(log4 n) rounds, while the one by Panconesi
and Rizzi[14] in O(Δ + log∗ n) rounds, where n is the number of vertices and
Δ is the maximum degree. A stabilizing maximal matching algorithm was also
proposed by Hsu and Huang[12] and its performance was re-evaluated[10,16],
furthermore, the computation model was recently sophisticated[2]. As far as we
know, no self-stabilizing vertex cover algorithm with less than 2-approximation
ratio is known.

In this paper we develop a self-stabilizing vertex cover algorithm with (2 −
1/Δ)-approximation ratio, where Δ is the maximum degree of a network. To
introduce our idea, we first describe a sequential version of our algorithm and
derive its approximation ratio. Next we state our self-stabilizing algorithm and
its correctness proofs. Then we claim that our main algorithm converges to the
same solution as the one the sequential algorithm outputs. The features of our
method are:

Approximation of Self-stabilizing Vertex Cover Less Than 2 173

– the approximation ratio is better than that of an obvious solution based on
the self-stabilizing maximal matching, and

– finding an adjacent vertex with the minimum degree locally (i.e., local op-
timization) is equivalent to those operations in the high-degree-first order
(i.e., global optimization).

The rest of this paper is organized as follows. Section 2 states our self-
stabilization model. Section 3 describes a sequential approximation algorithm
to prepare for our main algorithm. Section 4 presents our method that finds
as small a vertex cover as possible. Section 5 proves the correctness and the
properties of our algorithm. Finally, Section 6 concludes the paper.

2 Model

Here we describe a model used in our discussion. There are n processes P =
{1, 2, . . . , n}, where each process is identified by the hardwired unique name.
A network consists of n processes of finite state machines connected arbitrarily
with bidirectional communication links, where each process i ∈ P has shared
state variables with a finite set of states Σi. We assume that transient faults
sometimes occur at the variables and the interval between faults is sufficiently
long compared to a stabilization time. The global state of all processes is called a
configuration. The set of all configurations is denoted by Γ = Σ1×Σ2×· · ·×Σn.

A network is represented by a graph G = (V, E), where V (= P) is a set of ver-
tices (processes) and E is a set of edges (communication links). For convenience,
we use the corresponding terms process–link and vertex–edge interchangeably.
A vertex i ∈ V is adjacent to another vertex j and an edge e ∈ E is incident to
i or j if there is an edge e = (i, j). Each process i is assumed to maintain a set
of adjacent processes N(i) correctly. Let N+(i) = {i} ∪ N(i) denote process i
with its adjacent processes. The number of edges incident to vertex i is called a
degree (or particularly called a pure degree), denoted by δi ≤ Δ, where Δ is the
maximum (pure) degree of a graph G. We define an identified degree di as (δi, i)
to make the degree of a vertex unique. Then we say that dk < di, called dk is
lower than di (or di is higher than dk), if δk < δi or (δk = δi)∧ (k < i). A vertex
i with the highest (maximum) degree means that there is no vertex with higher
degree in N(i) for distributed algorithms, or in V \i for sequential algorithms.
The lowest (minimum) degree is similarly defined. When we just refer to a degree
without notice, e.g., high-degree-first, it means the identified degree1.

We assume a state-reading model for simplicity, that is, each process di-
rectly reads the shared variables of adjacent processes and updates only the
variables of its own. Each process has a program of internal computations,
“if Guard then Action”, or denoted by Guard ⇒ Action . If Guard is true in a
process i, the process is said to be enabled. A transient fault may perturb states
of processes, where the number of enabled processes may be more than one.
From the set of enabled processes EP ⊆ P , a scheduler D-daemon (distributed

1 We explicitly use the pure degree only in Lemma 1.

174 J. Kiniwa

daemon) selects, or called activates, a non-empty set of processes A ⊆ EP at
a configuration cj ∈ Γ . An atomic step consists of reading the states of adja-
cent processes, an internal computation, and writing its own state. We say that
cj+1 is reached from cj for such a transition of configurations. An execution E
is a sequence of configurations E = c0, c1, . . . , cj , cj+1, . . . such that cj+1 ∈ Γ is
reached from cj ∈ Γ . The definition of round complexity[3] is as follows. The first
round e is the minimal prefix of an execution E in which every process executes
at least one action. Let e′ be the suffix of E such that E = ee′. The second round
e′′ of E is the first round of e′, and so forth. The daemon is assumed to be fair,
that is, every process is activated infinitely often.

The state variables of each process contain a pointer. The pointer points to
one of adjacent processes to make a matching. We say that process i makes
a proposal to k ∈ N(i) if i points to k, denoted by i → k, when k does not
point to i. Conversely, we say that process i accepts a proposal of k ∈ N(i) if i
points to k against the k’s proposal to i. That is, i → k and k → i hold and are
abbreviated to i ↔ k. In that case, we say that process i is matched (with process
k) and it is denoted by i ∈ Matched or (i, k) ∈ Matched . If i �∈ Matched , it is
called unmatched. A set of matched processes are partitioned into two subsets,
Proposer and Acceptor, where processes in Proposer have made proposals and
those in Acceptor have accepted them. A vertex is said to be covered when it is
contained in the vertex cover C ⊆ V , or otherwise uncovered. Additionally, an
edge is also said to be covered when it is incident to some vertex in C.

3 Preliminaries

To introduce our self-stabilizing algorithm, here we state an underlying sequen-
tial algorithm. Our basic idea is partly based on a simple greedy approach : (1)
take a vertex v with the maximum degree and delete v with its all incident edges,
and (2) iterate this until there are no edges left. Though the greedy method seems
to be usually good, its approximation ratio is known to be O(log n) times the
optimal vertex cover in the worst case. To achieve a better approximation ratio,
we need other techniques.

On the other hand, our idea is also partly based on a 2-approximation algo-
rithm that makes use of a maximal matching. This approximation ratio is derived
by the fact that a vertex cover is always included in any maximal matching. Since
the algorithm always outputs both the matched vertices, the approximation is
not good if the matching is close to the maximum matching. The bounded ap-
proximation ratio, however, is attractive to researchers.

Hence our method is to combine these algorithms so that it usually works
well with the guarantee of the bounded worst case. Furthermore, we would like
to achieve a better approximation ratio than 2, which is known to be the best
one in a distributed setting[6]. First, we construct a high-degree-first maximal
matching, where the vertex with the maximum degree is matched first, and then
cover the vertex (one endpoint of the matched edge), and so forth. Finally, we

Approximation of Self-stabilizing Vertex Cover Less Than 2 175

Proposer Acceptor

1st

2nd

m th

k edges

i

i

1/k1

1/k2

1/kmi

1/ki
1/ki

1/ki

i

Fig. 1. Each edge cost incident to i

cover some vertices in order to complete a vertex cover by using the information
of degrees.

Now we outline a sequential algorithm VCover, in which we use some ex-
pressions similar to the self-stabilizing algorithm. Let L be a sorted list whose
top is the vertex with the maximum degree. A vertex v, the top element of L, is
iteratively selected. Since the selected vertex v corresponds to the process mak-
ing a proposal, we call v a proposal vertex and express v ∈ Proposer . Likewise,
the minimum degree vertex u matched with the proposal vertex v is called an
acceptance vertex. We call the i-th selected vertex in Proposer the i-th proposal
vertex.

1. Sort vertices into the high-degree-first order and construct a list L according
to the order.

2. For each vertex v at the top of L, iterate (a)–(c) (until no vertex can be
selected):
(a) Select its adjacent vertex u with the minimum degree and join (u, v) to

a matching.
(b) Cover the vertex v (not u).
(c) Remove u and v from the list L.

3. If there is some uncovered vertex v �∈ Proposer which is adjacent to some
uncovered vertex u with a lower degree, cover the vertex v.

Notice that the vertex v is matched with the vertex u having the minimum
degree because the matching in VCover must be exactly the same as the one in
our self-stabilizing algorithm. Since the degree is defined as the identified degree,
it is uniquely determined.

The following lemma shows the performance of VCover. Let Inc(i) be a set
of incident edges to vertex i. The set Inc(i) is partitioned into three disjoint
subsets, i.e., Inc(i) = Old(i) ∪ New(i) ∪ Both(i), where |Old(i)| = mi and
|New(i)∪Both(i)| = ki. Hence δi = mi + ki. For simplicity, we denote New(i)∪
Both(i) by E(i). The subsets are defined as

Old(i) = {(i, j) | δi ≤ kj},

176 J. Kiniwa

New(i) = {(i, j) | δj ≤ ki} and
Both(i) = {(i, j) | kj < δi, ki < δj}.

In other words, (i, j) ∈ Old(i) is equivalent to (i, j) ∈ New(j) because ki < δi ≤
kj ≤ δj holds. Conversely, (i, j) ∈ Old(j) is equivalent to (i, j) ∈ New(i). To
estimate the performance of VCover, an identical cost defined below is given
for (i, j) ∈ Old(i) ∩ New(j) and (i, j) ∈ New(i) ∩ Old(j). On the other hand,
(i, j) ∈ Both(i) is equivalent to (i, j) ∈ Both(j), for which separate costs are
given.

Lemma 1. The approximation ratio of the algorithm VCover is

2 − 1
Δ

.

Proof. The proof proceeds by assigning costs cij and cji to each edge (i, j) ∈
E(i) = New(i) ∪ Both(i), and then using the costs to derive the relationship
between the size of the optimal vertex cover |C∗| and the size of the output
|C| of VCover. The cost cij is defined as evenly distributing the cost of 1 over
every edge (i, j) ∈ E(i). Notice that any edge (i, j) ∈ Both(i) ∩ Both(j) has
two separate costs cij = 1/ki and cji = 1/kj , while the other edge (i, j) ∈
New(i) ∩ Old(j) has the identical cost cij = cji = 1/ki.

We can construct the three subsets of edges in the process of VCover. In
most cases, the edges covered for the first time by i belong to E(i) because the
high-degree-first ordered list L is used. The only exception is that the edge (i, j)
firstly covered by i may belong to New(j). Since this case requires both i and
j to be covered due to δi ≤ kj , shifting the “firstly covered vertex” to j unlike
VCover, does not change the number of covered vertices. Hence the sum of the
entire edge costs

∑
(i,j)∈E(i) cij for all vertex i ∈ V is equivalent to |C|.

The sum of costs for ki edges in E(i) is ki · 1/ki = 1 (see Fig. 1). On the
other hand, the edge cost cji = 1/kj for an edge (i, j) ∈ Old(i) is bounded by
1/δi. Since there are mi edges in Old(i), the entire cost for Inc(i) is∑

(i,j)∈Inc(i)

cij ≤ 1 +
mi

δi
= 2 − ki

δi
.

Thus we obtain

|C| ≤
∑
i∈C∗

∑
(i,j)∈Inc(i)

cij

≤ |C∗|(2 − 1
Δ

).

��
4 Self-stabilizing Algorithm

Now we present our self-stabilizing algorithm SSVC. The SSVC is a distributed
version of the VCover stated above. To execute operations locally, some tech-
niques are contained in the algorithm.

Approximation of Self-stabilizing Vertex Cover Less Than 2 177

First, each process has a variable color in order to construct the high-degree-
first matching. The color is defined as the identified degree of a process if not
matched, and as the same color as that of the proposal process if matched.
If an unmatched process can detect some adjacent, lower colored processes, it
makes a proposal to the minimum degree one. Thus the color determines whether
or not it can make a proposal. Even if more than one processes concurrently
make proposals to the same process i, the process i accepts the proposal of the
maximum degree process j. Then process i’s color is boosted up to process j’s
one. Thus lower colored processes cannot make proposals to i thereafter. After
i has been matched with j, the unmatched, proposal processes must give up
their proposals to i. To make it possible, we use a totally ordered degree, i.e., an
identified degree, for each process.

Second, every process that can make a proposal is covered with respect to
the vertex covering. Then the remaining covered processes are determined as
follows. Let i be a non-proposal process. If every adjacent process k ∈ N(i) has
been matched with j �= i and has higher degree than i, process i is not covered.
Otherwise, i is covered.

In Summary, we use a shared variable coli ∈ {(δj, j) | 1 ≤ δj ≤ Δ, j ∈ P}
representing process i’s color, and coli = (δi, i) when i is unmatched. Each
process i has a variable coveri ∈ {true, false}, representing a covered process
when coveri = true, which may not be shared.

The SSVC is formally described as follows.

Definition of Sets

Low i = {k ∈ N(i) | colk < coli}
Highi = {k ∈ N(i) | coli < colk}

Other i = {k ∈ N(i) | k → j �= i}
dmin(i) = {k | min

k∈Lowi

dk}

dmax (i) = {k | max
k∈Highi

dk, k → i}

Notice that dmin(i) is the minimum degree vertex among the lower colored
vertices adjacent to i, and that dmax (i) is the maximum degree vertex among
the higher colored adjacent vertices that point to i.

High-Degree-First Matching

(∀k ∈ N(i) : i �↔ k) ∧ (coli �= di) ⇒ coli := di (a)
(∃k ∈ N(i) : i ↔ k) ∧ (coli �= max(di, dk)) ⇒ coli := max(di, dk) (b)
∃dmax (i) : (dmax (i) → i) ∧ (i �→ dmax (i)) ⇒ i → dmax (i) ; coli := ddmax(i) ;

coveri := false (c)
∃k ∈ Highi : (i → k) ∧ (k �→ i) ⇒ i → null ; coli := di ;

coveri := false (d)
(∃dmax (i) : (dmax (i) �→ i))

∧(∃dmin(i) : (i �→ dmin(i))) ⇒ i → dmin(i) ; coveri := true (e)

178 J. Kiniwa

Non-proposal Covered Vertices

(∀k ∈ Other i : (di < dk) ∧ coveri)
∨(∃k ∈ Other i : (dk < di) ∧ (¬coveri)) ⇒ coveri := ¬coveri (f)

Each statement above is informally explained in what follows.

(a) Every wrong color of unmatched processes is corrected.
(b) Every wrong color of matched processes is corrected.
(c) The proposal of a process with the (locally) maximum degree is accepted if

at least one proposal is made.
(d) A proposal to a higher colored process is discarded.
(e) If a process is not pointed by any higher degree process and is adjacent to

some lower colored processes, it makes a proposal to the minimum degree
process among them.

(f) If a process i is adjacent to only processes with pointing others and i has
the minimum degree among them, it is not covered. Conversely, if such a
process does not have the minimum degree, it is covered.

Figure 2 intuitively illustrates how our SSVC stabilizes. First, given an ar-
bitrary configuration, each vertex determines its color which is totally ordered.
The leftmost figure shows that each vertex has a color of its own degree because
no matched edge has been generated. For example, the label (4, 8) means that
the vertex has a col of i = 8 and degree δi = 4. Furthermore, it shows that cov-
ered vertices, indicated by shaded vertices, are arbitrarily scattered. Next, the
high-degree-first matching is executed in the second figure. After a maximal set
of proposals to distinct vertices have been stabilized, covered vertices in Proposer
are determined. Finally, the covered vertices not in Proposer are determined in
such a way that every adjacent matched vertex has a higher degree as in the
rightmost figure.

determination
 of cover
in Proposer

determination
 of remaining
 cover

determination
 of col

(4,8)

(3,7)

(3,6)

(2,5)

(3,4)

(3,3)

(2,1)

(1,2)

Proposer Acceptor Proposer Acceptor

(2,5)

(3,4)

(3,3)

(1,2)

(2,1)

Fig. 2. Progress of stabilization

Approximation of Self-stabilizing Vertex Cover Less Than 2 179

5 Correctness and Properties

To show that SSVC is deadlock-free, we introduce the following predicate. When
VC is true, it means the system reaches a legitimate configuration.

VC ≡ (∀e = (i, j) ∈ E : (coveri = true) ∨ (coverj = true))

Lemma 2. If VC is false, there exists at least one process which can apply some
rule in SSVC.

Proof. (by contradiction) Suppose that there is some edge e = (i, j) whose
both ends are not covered. Then neither of them has executed (e). There are
two cases.

(1) Neither i nor j is in Matched :
Since di < dj or dj < di holds, the higher degree process between i and j
can execute (e).

(2) Either i or j is in Matched :
Suppose that i is matched and j is not. If di < dj , then (∃i ∈ Other j :
(di < dj) ∧ (¬coverj)) in (f) is true for process j. Otherwise, the same rule
is applied to process i.

Therefore, every edge is eventually covered. ��

To show that SSVC converges to a legitimate configuration, we define the fol-
lowing pseudo-legitimate states and use the proof method of convergence stairs.

Eligible = {i | Low i �= φ},
Lowest = {i | ∀k ∈ Other i : di < dk}

P1 ≡ (∀i �∈ Matched : (coli = di)) ∧ (∀(i, k) ∈ Matched : (coli = max(di, dk)))
P2 ≡ P1 ∧ (∀i ∈ Eligible : (i ↔ dmin(i)) ∧ (coveri = true))
P3 ≡ P2 ∧ (∀i ∈ ¬Proposer ∧ ¬Lowest : (coveri = true))

∧(∀i ∈ ¬Proposer ∧ Lowest : (coveri = false))

Lemma 3. P1 eventually holds.

Proof. Let i be a process in ¬Matched . If i has a wrong coli, that is, coli �= di,
then it is corrected by (a). Suppose that i moves from ¬Matched to Matched. If
several processes in High i point to i, then i selects the process dmax (i) with the
maximum degree among them and sets coli to the same degree as dmax (i) by
(c). Conversely, if i is pointed by a process k ∈ Low i, i just points to k but coli

remains unchanged. Thus ∀(i, k) ∈ Matched : (coli = max(di, dk)) holds.
On the other hand, let i be a matched process with k. If i has a wrong coli,

that is, coli �= max(dk, di), then it is corrected by (b). Suppose that (i, k) has
changed from Matched to ¬Matched . If k changes its pointer to another process,
then coli is reset to di (if necessary) by (d). Thus ∀i �∈ Matched : (coli = di)
holds.

After every process has been activated, P1 is satisfied. ��

180 J. Kiniwa

Lemma 4. P2 eventually holds.

Proof. (by induction) Suppose that P1 ∧¬P2 holds. Hence every information
about col is true. Let K = {i1, i2, . . . , ik}, where di1 > di2 > · · · > dik

, be a set
of processes such that i ∈ K belongs to Eligible and k ∈ N+(i) : k �→ dmin(k).
Let j represent dmin(i1) for simplicity. Without loss of generality, we assume
that i2 ↔ j (= dmin(i1)) and di2 > dj . Since i1 �→ dmin(i1), i1 eventually points
to j, that is, i1 → j, and coveri1 := true by rule (e). Since colj = coli2 < coli1 ,
rule (c) can be applied to j. Thus i1 ↔ j holds and i1 is removed from K. At
this time, colj := di1 and thus colj > coli2 holds. Then by rule (d), i2 → null
holds. If Low i2 is not empty, i2 can select dmin(i2) from Low i2 .

Notice that if Low i becomes empty for some i ∈ K, such i is automatically
removed from K. Since the same argument holds for any ij , ij+1 ∈ K as long as
they belong to Eligible, the lemma follows by induction. ��

Lemma 5. P3 eventually holds.

Proof. Suppose that P2 ∧ ¬P3 holds and that some process i in ¬Proposer ∧
¬Lowest has coveri = false . Then the portion (∃k ∈ Other i : (dk < di) ∧
(¬coveri)) in rule (f) will correct such process i. Next suppose that some process
i in ¬Proposer ∧ Lowest has coveri = true. Then the portion (∀k ∈ Other i :
(di < dk) ∧ coveri) in rule (f) corrects such an error. ��

Let Ms be a matching eventually determined by SSVC. The following the-
orem shows the efficiency of our method.

Theorem 1. SSVC is a self-stabilizing distributed vertex cover algorithm whose
stabilization time is |Ms| + 2 rounds.

Proof. For the j-th round, the j-th highest-degree vertex makes a correct pro-
posal and the (j − 1)-st proposal is accepted. Hence, a maximal matching is
completed in the (|Ms| + 1)-st round. Since non-proposal vertices, which have
some adjacent lower degree vertices, locally know the necessity of being covered,
they are covered in the (|Ms| + 2)-nd round. ��

We show Lemmas 6 and 7 which claim the output of our self-stabilizing
algorithm is equivalent to that of the sequential one.

Lemma 6. Let Mv be a matching determined by VCover. We claim

Ms = Mv.

Proof. (by induction) Let ik be the k-th proposal vertex, and iks ∈ N(ik) the
matched vertex with ik in VCover. Since i1s is the vertex with the minimum
degree in N(i1), the edge (i1, i1s) belongs to Mv. On the other hand, i1 makes
a proposal to i1s by rule (e) in SSVC. Then the proposal is eventually accepted
irrespective of whether i1s has already matched or not. Hence the edge (i1, i1s)
also belongs to Ms.

Approximation of Self-stabilizing Vertex Cover Less Than 2 181

Suppose that every vertex {i1, . . . , ik} in SSVC has the same edge {i1s, . . . , iks}
as in VCover. Further suppose that (ik+1, i

k+1
s) belongs to Mv. Then ik+1

s is
the vertex with the minimum degree in N(ik+1). In SSVC, if ik+1 has made
a proposal to its ∈ {i1s, . . . , iks}, its will reject the proposal and then ik+1 will
eventually select the vertex with the minimum degree by rules (d) and (e). Since
the vertex with the minimum degree in N(ik+1) is uniquely determined, the edge
(ik+1, i

k+1
s) will also be contained in Ms. ��

Lemma 7. Let Cs and Cv be sets of vertex cover determined by SSVC and
VCover, respectively. We claim

Cs = Cv.

Proof. By Lemma 6, Cs = Cv holds with respect to Proposer in Ms and Mv. The
remaining covered vertices are uniquely determined by only degree information,
which is equivalent in two algorithms. Thus Cs = Cv also holds in the remaining
portion. ��

By Lemmas 1 and 7, we obtain the following theorem.

Theorem 2. The approximation ratio of SSVC is 2 − 1/Δ. ��

6 Conclusion

We proposed a self-stabilizing algorithm for finding as small a vertex cover as
possible in distributed systems. It has a wide application to the placement of
agents or facilities in networks. The obtained approximation ratio is at most
2 − 1/Δ. It is interesting that the priority of vertices generates the same output
as a sequential algorithm.

Our future work will include developing self-stabilizing approximation algo-
rithms for other distributed combinatorial problems, improving their approxi-
mation ratios, and investigating their practical applications.

References

1. Y.Bejerano and R.Rastogi, Robust monitoring of link delays and faults in IP net-
works, In Proceedings of the IEEE INFOCOM , March (2003).

2. S.Chattopadhyay, L.Higham and K.Seyffarth, Dynamic and self-stabilizing dis-
tributed matching, In Proceedings of the 21st Annual ACM Symposium on Princi-
ples of Distributed Computing, July (2002) 290–297.

3. S.Dolev, A.Israeli and S.Moran, Uniform dynamic self-stabilizing leader election,
IEEE Transactions on Parallel and Distributed Systems, 8(4) (1997) 424–440.

4. M.R.Garey and D.S.Johnson, Computers and intractability. a guide to the theory
of NP-completeness, Freemann (1979).

5. V.K.Garg and C.Skawratananond, On timestamping synchronous computations,
In Proceedings of the IEEE International Conference on Distributed Computing
Systems (ICDCS’02) , July (2002).

182 J. Kiniwa

6. F.Grandoni, J.Könemann, and A.Panconesi, Distributed weighted vertex cover via
maximal matchings, In Proceedings of the 11th International Computing and Com-
binatorics Conference (COCOON’05), August (2005).

7. E.Halperin, Improved approximation algorithms for the vertex cover problem in
graphs and hypergraphs, SIAM Journal on Computing 31(5) (2002) 1608–1625.

8. M.Hańćkowiak, M.Karoński, and A.Panconesi, On the distributed complexity of
computing maximal matchings, SIAM Journal on Discrete Mathematics 15(1)
(2001) 41–57.

9. J.H̊astad, Some optimal inapproximability results, Journal of the ACM , 48(4),
(2001) 798–859.

10. S.T.Hedetniemi, D.P.Jacobs, and P.K.Srimani, Maximal matching stabilizes in
time O(m), Information Processing Letters 80 (2001) 221–223.

11. T.A.Hegazy, A distributed approach to dynamic autonomous agent placement for
tracking moving targets with application to monitoring urban environments, Ph.D.
Thesis, School of Electrical and Computer Engineering, Georgia Institute of Tech-
nology (2004).

12. S.-C.Hsu and S.-T.Huang, A self-stabilizing algorithm for maximal matching, In-
formation Processing Letters 43 (1992) 77–81.

13. H.Nagamochi and T.Ibaraki, An approximation of the minimum vertex cover in a
graph, Japan Journal of Industrial and Applied Mathematics 16 (1999) 369–375.

14. A.Panconesi and R.Rizzi, Some simple distributed algorithms for sparse networks,
Distributed Computing , 14, (2001) 97–100.

15. C.Savage, Depth-first search and the vertex cover problem, Information Processing
Letters 14(5) (1982) 233–235.

16. G.Tel, Maximal matching stabilizes in quadratic time, Information Processing Let-
ters 49 (1994) 271–272.

17. R.Bar-Yehuda and S.Even, A local-ratio theorem for approximating the weighted
vertex cover problem, Annals of Discrete Mathematics, 25 (1985) 27–46.

Self-stabilization in Spite of Frequent Changes of
Networks: Case Study of Mutual Exclusion on

Dynamic Rings

Toshimitsu Masuzawa� and Hirotsugu Kakugawa��

Osaka University, Toyonaka 560-8531, Japan
{masuzawa, kakugawa}@ist.osaka-u.ac.jp

Abstract. It is generally said that a self-stabilizing protocol is inefficient
in distributed systems with frequent faults or topological changes and,
what is worse, it might never converge to its intended behavior forever.
Its main reason is that a new fault or topological change brings the
system into an unexpected configuration, and thus, the system restarts
convergence to its intended behavior from scratch. But the reasoning
seems too pessimistic.

This paper provides a novel observation about self-stabilization on
frequently changing networks: by quantifying influence of steps of a self-
stabilizing protocol and that of a topological change, efficiency of the
convergence can be estimated with considering topological changes that
occur during the convergence. To show the feasibility and effectiveness
of the approach, this paper presents a simple self-stabilizing mutual ex-
clusion protocol on a dynamic ring where processes can join and leave
the ring at any time. This paper clarifies what restrictions on frequency
of joins and leaves are sufficient to guarantee the convergence and to
guarantee the intended behavior after the convergence. The restrictions
are not strict and thus the protocol can complete convergence and can
continue its intended behavior on a frequently changing ring.

1 Introduction

A self-stabilizing protocol is a protocol that achieves its intended behavior re-
gardless of the initial network configuration (i.e., global state) [4]. Thus, a self-
stabilizing protocol is resilient to any number and any type of transient faults
and is adaptive to any number and any type of topological changes of networks:
after the last fault or the last topological change occurs, the protocol starts to
converge to its intended behavior. These advantages make self-stabilizing pro-
tocols extremely attractive for designing highly dependable distributed systems.

� This work is supported in part by JSPS, Grant-in-Aid for Scientific Research
((B)15300017), MIC, Strategic Information and Communications R&D Promotion
Programme, and MEXT, “The 21st Century Center of Excellence Program.”

�� This work is supported in part by JSPS, Grant-in-Aid for Encouragement of Young
Scientist (15700017).

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 183–197, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

184 T. Masuzawa and H. Kakugawa

The self-stabilization has attracted a great deal of attention of researchers and
practitioners working in the field of distributed systems.

A self-stabilizing protocol can converge to its intended behavior, but the con-
vergence is guaranteed only when the distributed system experiences no new fault
or topological change during the convergence. When the system experiences a
new fault or topological change before completing the convergence, the configu-
ration immediately after the disturbance is regarded as an arbitrary one, which is
regarded as a new initial configuration. Thus, in distributed systems where faults
or topological changes frequently occur, a self-stabilizing protocol is quite ineffi-
cient and, what is worse, it might never converge to its intended behavior forever.

On the other hand, because of a rapid increase in the size of distributed
systems and development of dynamic distributed systems such as P2P systems
and mobile systems, self-stabilizing protocols that can tolerate frequent faults
and frequent topological changes are highly desired. However, to the best of
our knowledge, the problem has been tackled by few works and waits further
investigation.

1.1 Contribution of This Paper

It is generally said that self-stabilizing protocols are inefficient in distributed
systems with frequent faults or topological changes. Its main reason is that a
new fault or topological change brings the system into an unexpected configu-
ration, and thus, the system restarts convergence to its intended behavior from
scratch. But the reasoning seems too pessimistic. Should a single new fault or
topological change spoil all the efforts a self-stabilizing protocol made before the
disturbance? This is the question that motivated us to start this research.

Our insight into the question is as follows. Each action of a self-stabilizing
protocol can be regarded as a forward step to the convergence, but a fault or
topological change can be regarded as a backward step. If we can quantify in-
fluence of the forward step and the backward step, we can estimate efficiency of
the convergence with considering faults or topological changes that occur during
the convergence. In other words, by evaluating the degree of regression a fault
or topological change can bring about, we can evaluate the total number of the
protocol’s steps required to complete the convergence despite the disturbance.

The most important contribution of this paper is to provide such a novel ob-
servation about self-stabilization on frequently changing networks. To show the
feasibility and effectiveness of our approach, we present a simple self-stabilizing
protocol that can converge to its intended behavior from an arbitrary configura-
tion and can continue its intended behavior on a frequently changing network.

We propose a self-stabilizing mutual exclusion protocol on a dynamic ring
where processes can join and leave the ring at any time. The protocol is based
on Dijkstra’s self-stabilizing mutual exclusion protocol [3]. We clarify what re-
strictions on frequency of joins are sufficient to guarantee the convergence and
to guarantee the intended behavior after the convergence. The restrictions are
not strict and thus the protocol can complete convergence and can continue its
intended behavior on a ring whose size frequently varies with time.

Self-stabilizing in Spite of Frequent Changes of Networks 185

1.2 Related Works

Because of high adaptability of self-stabilizing protocols to topological changes,
many works study self-stabilizing protocols on dynamic networks [1,2,5,6,7,8].
Most of the proposed protocols can converge to their intended behavior under
the assumption that networks remain static during the convergence [1,6,7], and
can continue its intended behavior until a new topological change occurs. Thus,
these protocols cannot be applied to networks with frequent topological changes.
The self-stabilizing mutual exclusion protocol proposed in [2] also requires that
networks remain static during its convergence. The distinct advantage of this
protocol is that it can guarantee its intended behavior in spite of (loosely re-
stricted) topological changes after the convergence.

Instead of prohibiting topological changes, the self-stabilizing group com-
munication protocol proposed in [5] requires the assumption that an agent can
traverse a network by random walk despite topological changes. The assumption
hides the affect of topological changes from the protocol. The paper also proves
impossibility of the group communication under (malicious) frequent topological
changes.

The concept of reconfiguration tolerance introduced in [8] is most related
to this paper. The concept is introduced with some restriction on topological
changes and guarantees the convergence and the intended behavior of a self-
stabilizing protocol as long as topological changes do not violate the restriction.
The self-stabilizing token circulation protocol proposed in [8] can complete the
convergence and can continue its intended behavior if the interval of consecutive
topological changes is longer than the time required for a token to traverse a
spanning tree twice. However, the admissible interval of topological changes is
longer than the convergence time of the protocol, and thus, the protocol actually
requires that the network remains static during the convergence.

1.3 Organization of This Paper

The rest of this paper is organized as follows. Section 2 introduces the compu-
tation model of dynamic rings and defines stabilization in the dynamic rings.
Section 3 shows a self-stabilizing mutual exclusion protocol on dynamic rings
and analyzes its efficiency. Finally, Section 4 contains some concluding remarks.

2 Model

2.1 Dynamic Ring Networks

A dynamic directed ring network (simply called a ring) is a ring network where
the number of processes forming the ring varies from time to time. The number of
processes in the ring is called the size of the ring. Processes can join and leave the
ring at any time. Each process p in the ring can identify its predecessor pred(p)
in the ring at any instance: while the process specified by pred(p) varies from
time to time because of joins and leaves of processes, (V, {(pred(p), p) | p ∈ V })

186 T. Masuzawa and H. Kakugawa

forms a directed ring at any instance where V denotes the set of processes in
the ring. In other words, we assume that the adequate update of pred(p) is
atomically executed when a process joins or leaves the ring. The details of the
update mechanism is not presented in this paper. Since a ring network is the
basis of several structures, maintenance of a dynamic ring is investigated in some
works [9,10]. When pred(p) = q holds for two processes p and q, q is called a
predecessor of p and p is called a successor of q. We also assume that there
exists a single designated process called a head process at any instance. The
head process p remains the head process until it leaves the ring. When the head
process p leaves the ring, its successor becomes the new head process. The details
of the mechanism for maintaining the single head process is not presented in this
paper.

Each process p is a (possibly infinite) state machine. Each process can directly
read its predecessor’s state and can change its own state depending on its current
state and its predecessor’s state. The normal action of each process p is defined
by guarded actions in the following form:

〈guardp〉 → 〈statementp〉.

The guard 〈guardp〉 of process p is a boolean expression on the states of p and its
predecessor. When the guard is evaluated to be true, 〈statementp〉 is executed
to change the state of p. We assume that the guarded action can be atomically
executed: evaluation of the guard and execution of the statement are executed
in one atomic action.

A configuration (or a global state) of the ring is represented by a vector of
process states. The length of the vector is equal to the current size of the ring.
Let σ = (s0, s1, s2, . . . , sn−1) be the configuration. Its entry si (0 ≤ i ≤ n − 1)
denotes the state of process pi, where p0 is the head process and pj (1 ≤ j ≤ n−1)
is the successor of pj−1. Since the size of the ring varies with time, the process
denoted by pi (0 ≤ i ≤ n − 1) may also vary with time. To avoid the confusion,
we use the following notations: n[σ] denotes the size of the ring at configuration
σ, p0[σ] denotes the head process at σ, and pj [σ] (1 ≤ j ≤ n[σ] − 1) denotes the
successor of pj−1[σ] at σ.

Now we consider transition of the configuration from σ to σ′. The configura-
tion transitions are classified into the following three cases.

1. Transition by a normal action of a process: A process p is said to be enabled
at a configuration σ when p has a guarded action whose guard is true at σ.
A process p is said to be disabled at σ when it is not enabled at σ. Let p be
an enabled process at σ = (s0, s1, . . . , sn[σ]−1), and σ′ = (s′0, s

′
1, . . . , s

′
n[σ′]−1)

be the configuration resulting from σ by p’s normal action. It is clear that
n[σ′] = n[σ] holds. When p = pi[σ] (0 ≤ i ≤ n[σ]−1), s′i is the state of p after
executing the guarded action. Notice that sj = s′j holds for each j (�= i).

2. Transition by a join of a process: Processes can join the ring at any time.
When a process newly joins the ring, the size of the ring increases by one.
Let p be a process that joins the ring at σ = (s0, s1, . . . , sn[σ]−1), and σ′ =
(s′0, s

′
1, . . . , s

′
n[σ′]−1) be the configuration resulting from σ by p’s join action.

Self-stabilizing in Spite of Frequent Changes of Networks 187

Fig. 1. Dynamic changes in the ring

It is clear that n[σ′] = n[σ] + 1 holds. When p = pi[σ′] (1 ≤ i ≤ n[σ′] − 1)1

(or p joins between pi−1[σ] and pi[σ]), s′j = sj holds for each j (0 ≤ j ≤ i−1)
and s′k+1 = sk holds for each k (i ≤ k ≤ n[σ] − 1) (Fig. 1(a)). We assume
that the state s′i of p is determined from the state si−1 of its predecessor.

3. Transition by a leave of a process: Processes can leave the ring at any time.
When a process leaves the ring, the size of the ring decreases by one. Let
p be a process that leaves the ring at σ = (s0, s1, . . . , sn[σ]−1), and σ′ =
(s′0, s

′
1, . . . , s

′
n[σ′]−1) be the configuration resulting from σ by p’s leave. It

is clear that n[σ′] = n[σ] − 1 holds. When p = pi[σ] (0 ≤ i ≤ n[σ] − 1),
s′j = sj holds for each j (0 ≤ j ≤ i − 1), and s′k = sk+1 holds for each
k (i < k ≤ n[σ′] − 1) (Fig. 1(b)). We assume that the state s′i (or the state
of p’s successor) is determined from its state and the state si of p.

When configuration changes from σ to σ′ by a normal action, a join or a
leave, the transition is denoted by σ �→ σ′.

As the execution model, we adopt the sequential execution model (sometimes
called the central daemon) where no two processes execute actions at the same
time. This assumption is made only for simplicity, and the protocol presented
in the next section works correctly even when two or more enabled processes
execute actions at the same time (i.e., distributed daemon). Complexity analysis
in the next section can be easily modified for the distributed daemon.

An execution of a protocol is represented by an infinite sequence of con-
figurations in the order they appear in the execution: an infinite sequence of
configurations E = σ0, σ1 . . . is an execution if and only if σi �→ σi+1 holds for
every i (i ≥ 0). The configuration σ0 is called the initial configuration of E. A
partial execution is denoted by E[σi, σj] = σi, σi+1 . . . , σj (i ≤ j).

The execution is not uniquely determined only from the initial configuration,
since there may exist several actions that can be executed at each configuration:
normal actions of enabled processes, a join into every place of the ring and a
leave of every process. One of them is arbitrary chosen to be executed. In the

1 Since p does not become the head process when it newly joins, we don’t consider the
case of p = p0[σ′].

188 T. Masuzawa and H. Kakugawa

rest of this paper, we assume that every execution is weakly fair: every enabled
process eventually executes its action unless it becomes disabled or leaves the
ring.

2.2 Mutual Exclusion

A self-stabilizing protocol is a protocol that achieves its intended behavior re-
gardless of the initial configuration. More precisely, a self-stabilizing protocol
guarantees that its execution can reach a safe configuration from any initial con-
figuration, where any execution starting from the safe configuration exhibits a de-
sired ”legal” behavior[4]. In this paper, we propose and analyze a self-stabilizing
protocol for the mutual exclusion problem. A self-stabilizing mutual exclusion
protocol on the dynamic ring networks is defined as follows.

Definition 1. (safe configuration of mutual exclusion) Configuration σ0
is a safe configuration of the mutual exclusion problem iff every execution E =
σ0, σ1 . . . starting from σ0 satisfies the following two conditions.

1. (safety) For every configuration σi (i ≥ 0), there exists at most one process
that has a privilege.

2. (liveness) Every process p has a privilege infinitely often in E unless p
leaves the ring. ��

Definition 2. (self-stabilizing mutual exclusion protocol) A protocol is a
self-stabilizing mutual exclusion protocol if any execution starting from an arbi-
trary configuration eventually reaches a safe configuration (convergence). ��

2.3 Complexity Measures

We evaluate efficiency of the convergence of a self-stabilizing protocol. We use
two complexity measures.

The step complexity is defined to be the maximum number of normal actions
executed until executions reach safe configurations. The maximum function is
taken over all executions starting from all possible configurations.

The step complexity of a self-stabilizing protocol on “static” rings is usually
represented as a function of the ring size. In “dynamic” rings, however, the step
complexity cannot be simply represented as a function of the ring size since
the ring size varies with time. Thus, the step complexity is represented as a
function of the initial ring size and the numbers of joins and leaves executed in
executions.

Definition 3. (step complexity) The step complexity of a self-stabilizing
mutual exclusion protocol is (at most) f(n0, #J, #L) if any execution E from
any initial configuration σ0 with size n0 satisfies the following:

Let σ be any configuration appearing in E. Let #N , #J and #L be re-
spectively the numbers of normal actions, joins and leaves that are executed in
E[σ0, σ]. If #N ≥ f(n0, #J, #L), then σ is a safe configuration. ��

Self-stabilizing in Spite of Frequent Changes of Networks 189

Intuitively the inequality #N ≥ f(n0, #J, #L) implies that sufficiently larger
number of normal actions are executed than joins and leaves in a prefix E[σ0, σ]
of E. In other words, the step complexity guarantees that the execution E reaches
a safe configuration if it has a relatively static prefix of the execution. This can
throw a new light on advantages of self-stabilizing protocols.

From the above explanation, readers may think of the deferred penalty of
joins and leaves: when huge number of joins and leaves are executed in the be-
ginning part of E, the huge number of normal actions must be executed until
#N ≥ f(n0, #J, #L) becomes true. However, in the context of self-stabilization,
we can escape the deferred penalty of joins and leaves by considering some con-
figuration after the period of great dynamic changes as an initial configuration.
Consequently, the execution E reaches a safe configuration if it has a relatively
static period in any part of E.

By adopting asynchronous rounds (simply called a round) instead of the steps,
the round complexity is similarly defined. Let E = σ0, σ1, . . . be any execution.
The first round is defined to be the minimal prefix E1 = σ0, σ1, . . . , σk such that
all enabled processes at σ0 make (normal or leave) actions or become disabled
in E1. The second round is the first round of E1 = σk, σk+1, . . ., and so on.

The round complexity of a self-stabilizing protocol is defined as follows.

Definition 4. (round complexity) The round complexity of a self-stabilizing
protocol is (at most) f(n0, #J, #L) if any execution E from any initial configu-
ration σ0 with size n0 satisfies the following:

Let σ be the last configuration of the R-th round of E for any R. Let #J and
#L be respectively the numbers of joins and leaves that are executed in E[σ0, σ].
If R ≥ f(n0, #J, #L), then σ is a safe configuration. ��

3 Self-stabilizing Mutual Exclusion on Dynamic Rings

Dijkstra[3] proposed a self-stabilizing mutual exclusion protocol on static di-
rected rings. We apply Dijkstra’s protocol to dynamic rings as it is. We simply
add join and leave actions that are executed when processes join and leave the
ring respectively.

Each process p has a state variable stp that takes a nonnegative integer in
{0, 1, . . . , K − 1} where K is a constant that is greater than the ring size at
any instance. Each process has a single guarded action as a normal action and is
considered to be privileged when the guard of the action is true. A self-stabilizing
mutual exclusion protocol on dynamic rings is presented as follows.

1. Normal action of the head process p:
stp = stpred(p) → stp := (stp + 1) mod K.

2. Normal action of process p other than the head process:
stp �= stpred(p) → stp := stpred(p).

3. Join action:
A newly joining process p executes the following action.
stp := stpred(p).
The process p recognizes that it is not the head process.

190 T. Masuzawa and H. Kakugawa

4. Leave action:
When the head process q leaves the ring, its successor p executes the following
action.
stp := stq.
The process p recognizes that it newly becomes the head process.
(When the leaving process is not the head process, no action is executed.)

In Dijkstra’s protocol for static rings of size n, it is known that any configu-
ration σ = (st0, st1, . . . , stn−1) satisfying the following condition SC is safe:
there exists i (0 ≤ i ≤ n − 1) such that

– stj = st0 for each j (0 ≤ j ≤ i), and
– stj = (st0 − 1) mod K for each j (i < j ≤ n − 1).

We can easily see that only the process p(i+1)modn is privileged in the safe
configuration. The configurations satisfying the condition SC are called SC-
configurations in what follows.

First, we show that any SC-configuration is also a safe configuration for dy-
namic rings. To show this property, we need some constraint on frequency of joins
from the following reason. At a configuration where process p is privileged, the
privilege moves to p’s successor when p executes the normal action. By consecu-
tive executions of normal actions of privileged processes, the privilege circulates
along the ring. However, on a dynamic ring, the privilege cannot complete the
circulation if joins have higher frequency than normal actions.

Definition 5. (nice execution) An execution E = σ0, σ1, . . . is said to be
nice if E satisfies the following condition:
For any configuration σi, there exists σj (j > i) such that the number of normal
actions executed in E[σi, σj] is larger than that of joins executed in E[σi, σj]. ��

Lemma 1. Any SC-configuration of the (dynamic) ring is a safe configuration
for nice executions.

(Proof) Consider any nice execution E starting from any SC-configuration. We
have to show E satisfies the safety and the liveness properties in Definition 1.

Safety: Let σ = (s0, s1, . . . , sn[σ]−1) be any SC-configuration and σ′ = (s′0, s
′
1, . . . ,

s′n[σ′]−1) be any configuration resulting from σ by execution of a single action
act. It is sufficient to show that σ′ is also a SC-configuration since only a single
process is privileged in any SC-configuration.

From the correctness of Dijkstra’s protocol on static rings, it is obvious that
σ′ is a SC-configuration if the action act is a normal action. From the statements
of the join and leave actions, it is clear that σ′ is a SC-configuration if the action
act is a join or a leave.

Liveness: For contradiction, assume that a process p remains in the ring forever
but never becomes privileged after some configuration σ in E. It follows from the
proof of the safety that any configuration appearing in E is a SC-configuration
and has a single privileged process.

Self-stabilizing in Spite of Frequent Changes of Networks 191

Let d (≥ 1) be the minimum distance from the privilege to p throughout the
execution after σ. Let σ′ be the configuration after σ in E where the distance
from the privilege to p is exactly d. Consider the execution starting from σ′. The
followings hold.

– From the statements of the normal and the leave actions, we can see that the
privilege moves to the successor of the privileged process when the privileged
process executes the normal or the leave action. Thus, the distance from the
privilege to p decreases by one.

– Execution of the join action by a new process has no influence on the priv-
ilege. Thus, when a new process joins into the part of the ring from the
privilege to p, the distance from the privilege to p increases by one.

Since E is a nice execution, there appears a configuration σ′′ after σ′ in E
such that the number of the normal actions executed in E[σ′, σ′′] is larger than
that of the joins executed in E[σ′, σ′′]. From the above observations, the distance
from the privilege to p at σ′′ is smaller than d; this contradicts the definition
of d. ��

Notice that the proof of the safety in Lemma 1 does not require the as-
sumption that the execution is nice. Thus, any execution starting from any safe
configuration satisfies the safety: there appears no configuration where two or
more processes have privileges at the same time. This is the advantage that the
protocol in [2] also has. The assumption of the nice executions is required to
guarantee only the liveness property.

In what follows, we prove the convergence of the protocol. It is sufficient
to prove that any execution starting from an arbitrary configuration eventually
reaches a SC-configuration. In the proof of the convergence, we focus on the
privileges at the initial configuration2 and trace their movement in E. To trace
the privileges, we first clarify movement of privileges.

Let σ be any configuration and σ′ be a configuration resulting from σ by an
action act.

– Case that act is a normal action of process p: It is clear that p is privileged
at σ and is not privileged at σ′. When p’s successor (say q) is privileged at
σ′, we say that the privilege p has at σ moves to q (or q receives a privilege
from p). When q is not privileged at σ′, we say that the privilege p has at σ
is discarded. In both cases, we say that the privilege q has at σ (if it has) is
discarded.

– Case that act is a join of p (p joins the ring): Since p simply copies the
state from its predecessor, it is clear that σ and σ′ have the same privileged
processes. Thus, join actions bring no movement of privileges.

– Case that act is a leave of p (p leaves the ring): When the successor (say q)
of p is privileged at σ′, we can see that either p or q is privileged at σ.

2 From the definition of privileged processes, every configuration has at least one
privileged process.

192 T. Masuzawa and H. Kakugawa

• When p is privileged at σ, we say that the privilege p has at σ moves to
q and that the privilege q has at σ (if it has) is discarded.

• When p is not privileged and q is privileged at σ, we consider that the
leave brings no movement of privileges.

When the successor (say q) is not privileged at σ′, we say that the privileges
p and q have at σ (if they have) are discarded.

From the movement of privileges clarified in the above, we can trace privi-
leges and regard execution of the protocol as circulation of privileges. Since no
action can create a new privilege, it is sufficient to trace privileges that exist in
the initial configuration. Notice that there exist at most n[σ0] privileges at any
configuration in any execution starting from σ0, since there exist at most n[σ0]
privileges at the initial configuration σ0.

Let E be any execution starting from an arbitrary configuration σ0. To prove
that E reaches a SC-configuration, we assign a lap number to each privilege.
Notice that the lap number is introduced only for the proof and cannot be used
in the protocol. The lap number of each privilege at the initial configuration σ0
is defined to be zero. The lap number of each privilege is incremented by one at
each time the privilege goes past the head process. That is, the lap number of
each privilege is incremented by one, when the privilege moves from the head
process to its successor by the normal action of the head process.

The following lemma clearly holds since no privilege passes others.

Lemma 2. The lap numbers of privileges that the head process receives are
monotonically non-decreasing. ��

The next lemma is a key lemma for analysis of the convergence.

Lemma 3. At most one privilege can get the lap number of two. (All other
privileges are discarded before their lap numbers become two.)

(Proof) Let E = σ0, σ1, . . . be any execution starting from an arbitrary config-
uration σ0. For contradiction, assume that the lap numbers of two privileges x
and y become two. Let σx(1) and σy(1) be the configurations immediately after
the lap numbers of x and y become one respectively3. Without loss of generality,
we can assume x(1) < y(1). Let σx(2) be the configuration immediately after the
lap number of x becomes two. Then, from Lemma 2, x(1) < y(1) < x(2) holds.

Let st = v (0 ≤ v ≤ K − 1) hold at the head process at σx(1). The state
of the head process at σx(2)−1 (i.e., at the configuration immediately before x
gets the lap number of two) also satisfies st = v since the head process executes
the normal action at σx(2)−1 to move x to its successor. The head process incre-
ments its state by one when and only when a privilege passes the head process.
Since the state of the head process increases by one at σy(1), the state is incre-
mented K times in E[σx(1), σx(2)−1]. However, since the number of privileges in
the ring is n[σ0] or less, at most n[σ0] privileges can pass the head process in
E[σx(1), σx(2)−1]. This is contradiction since K > n[σ0] holds. ��
3 At σx(1) (resp. σy(1)) the successor of the head process has x (resp. y).

Self-stabilizing in Spite of Frequent Changes of Networks 193

Lemma 4. Assume the lap number of a privilege (say x) becomes two. The con-
figuration immediately before x gets the lap number of two (i.e., the configuration
at which the head process executes the normal action to move x to its successor)
is a safe configuration for nice executions.

(Proof). From the proof of Lemma 3, we can see that the privilege x is the
last privilege that gets the lap number of one, and that x with the lap number
of one completes circulation of the ring and gets the lap number of two. It is
clear that all processes have the same state when x completes the circulation
(i.e., at the configuration where the head process has x). The configuration is a
SC-configuration and thus is safe for nice executions from Lemma1. ��

Lemma 4 implies that we can prove the convergence if we can show that
a privilege eventually gets the lap number of two. Also Lemma 4 implies that
we can estimate the numbers of steps and rounds required for the convergence
by estimating the numbers of steps and rounds required until a privilege gets
the lap number of two. Unfortunately, the constraint defining the nice execu-
tions is insufficient to guarantee the convergence. In what follows, we consider
the numbers of steps and rounds required until a privilege gets the lap number
of two, which are sufficient conditions on executions to guarantee the conver-
gence.

3.1 Step Complexity of Convergence

In this subsection, we evaluate the number of steps required until a privilege
gets the lap number of two. Let E be any execution starting from an arbitrary
configuration σ0. To evaluate the number of steps, we associate a lifetime, a
non-negative integer, with each privilege at any configuration σ. The lifetime
life(x)[σ] of a privilege x at σ is defined by

life(x)[σ] =
{

dist(x)[σ] + n[σ] if x has the lap number of zero, and
dist(x)[σ] if x has the lap number of one,

where dist(x)[σ] denotes the distance from the privilege x to the head process
at σ. Intuitively life(x)[σ] gives an upper bound of the steps (movements) that
x can experience during its lap number zero or one, provided that the ring size
remains unchanged.

Our aim is to evaluate the number of steps required until a privilege gets
the lap number of two. From Lemma 4, the configuration immediately before
a privilege (say x) gets the lap number of two is a safe configuration and has
no privilege other than x. This implies that the lifetime of x at the configura-
tion is zero. Thus, the total of the lifetime over all privileges at σ (denoted by
TLIFE[σ]) gives an upper bound of the steps required to reach a safe configu-
ration provided that the ring size remains unchanged.

Now we consider the influence of actions to the value of TLIFE. Let σ be
any configuration and σ′ be a configuration resulting from σ by an action act.

194 T. Masuzawa and H. Kakugawa

– Case that act is a normal action of process p: The privilege (say y) that p
has at σ moves to p’s successor or is discarded4. This implies life(y)[σ′] ≤
life(y)[σ] − 1, and thus, TLIFE(σ′) ≤ TLIFE(σ) − 1 holds.

– Case that act is a join of p (p joins the ring): Let y be any privilege at σ.
When p joins into the part of the ring from y to the head process, then
dist(y) increases by one. The size of the ring also increases by one. This
implies life(y)[σ′] ≤ life(y)[σ] + 2. In the case that y is located at the head
process, dist(y) does not increase and life(y)[σ′] ≤ life(y)[σ]+1 holds. Also
in the case that y has the lap number of one, life(y)[σ′] ≤ life(y)[σ] + 1
holds.
Since the initial configuration σ0 has at most n[σ0] privileges, the number of
privileges at any configuration cannot exceed n[σ0]. When n[σ0] privileges
exist in the initial configuration, one is located at the head process at σ0.
Thus, in any configuration after the initial configuration with n[σ0] privileges,
at least one privilege is located at the head process or has the lap number
of one. Consequently, TLIFE(σ′) ≤ TLIFE(σ) + 2n[σ0] − 1 holds.

– Case that act is a leave of p (p leaves the ring): Let y be any privilege at σ. It is
clear that the leave cannot increase the value of TLIFE. While the difference
between life(y)[σ] and life(y)[σ′] depends on the location of the leaving
process and the lap number of y, life(y)[σ] − 2 ≤ life(y)[σ′] ≤ life(y)[σ]
clearly holds. Thus, we ignore the influence of leaves on the value of TLIFE.

From the above observation about influence of actions to the value of TLIFE,
we can prove the following theorem. Intuitively, the theorem implies that a single
join can spoil the efforts of at most 2n[σ0]− 1 normal actions. It cannot spoil all
the efforts that the protocol has made.

Theorem 1. Let E be any execution starting from an arbitrary configuration
σ0. Let σ be any configuration in E, and #N [σ] (resp. #J [σ]) be the number of
normal actions (resp. joins) executed in E[σ0, σ]. Then, the configuration σ is
safe for nice executions if the following holds:

#N [σ] ≥ 3n[σ0]2 − n[σ0]
2

+ 2n[σ0] · #J [σ] − #J [σ]

(Proof) The initial configuration σ0 has at most n[σ0] privileges. Since each
process has at most one privilege at any configuration,

TLIFE[σ0] ≤
n[σ0](n[σ0] − 1)

2
+ n[σ0]2 =

3n[σ0]2 − n[σ0]
2

holds. Since each normal action decreases TLIFE by at least one and each join
increases TLIFE by at most 2n[σ0] − 1,

TLIFE[σ] ≤ TLIFE[σ0] − #N [σ] + (2n[σ0] − 1) · #J [σ]

holds. From this inequality,
4 The privilege that p’s successor has at σ is also discarded if exists.

Self-stabilizing in Spite of Frequent Changes of Networks 195

TLIFE[σ0] − #N [σ] + (2n[σ0] − 1) · #J [σ] ≤ 0

implies TLIFE[σ] = 0, which guarantees that σ has exactly one privilege x: x
is located at the head process and has the lap number of one. This implies that
σ is a SC-configuration, and thus, σ is a safe configuration.

From the above inequalities, we can see that TLIFE[σ] = 0 holds, if the
inequality of the theorem holds. ��

Theorem 1 does not overestimate the step complexity so much. Consider the
initial configuration σ0 = (0, n − 2, n − 3, . . . , 1, 0) where n = n[σ0] (Fig. 2).
When #J processes consecutively join the ring as the predecessors of the head
process, the configuration changes to σ#J = (0, n − 2, n − 3, . . . , 1, 0, 0, . . . , 0).
Figure 2 shows an execution starting from σ#J that requires

3n[σ0]2 − 3n[σ0]
2

+ 2n[σ0] · #J − 2#J − 1

steps until it reaches a safe configuration. In Fig. 2, the small numbers in paren-
theses show the order processes execute the normal actions between the configu-
rations. While the execution does not include leaves, it is easy to add leaves (in
the last part of the execution) without reducing the step complexity.

Remarks About Transient Faults During Convergence: From Theorem 1, we can
claim that the protocol is robust against joins of processes: (at most) only the
2n[σ0] − 1 normal actions can be spoiled by a single join. However, the proto-
col is vulnerable to transient faults during convergence. Consider configuration
σ#J+n(#J+n−1) in Fig. 2 and assume, for simplicity, that #J = 0 holds. When
a transient fault changes the state of p0 from n − 1 into 0, the resultant config-
uration is σ = (0, n − 2, n − 3, . . . , 1, 1) and is the same as σ#J+1 resulting from
σ#J by an action of pn−1. This implies that the single transient fault spoils all
the n2 − n − 1 normal actions executed between σ#J+1 and σ#J+n(#J+n−1).

3.2 Round Complexity of Convergence

In this subsection, we evaluate the number of rounds required until the protocol
reaches a safe configuration. Since every privilege makes at least one movement
in each round unless it is discarded, we use the maximum of the lifetime over all
privileges at σ (denoted by MLIFE[σ]) instead of TLIFE[σ].

It is clear that MLIFE[σ] ≤ 2n[σ0]−1 at the initial configuration σ0 and that
configuration σ is safe if MLIFE[σ] = 0 holds. Since normal actions executed in
a round decreases MLIFE at least one and each join increases MLIFE at most
two, we can prove the following theorem in a similar way to that of Theorem 1.
Intuitively, the theorem implies that a single join spoils the efforts of at most
two rounds the protocol has made.

Theorem 2. Let E be any execution starting from an arbitrary configuration σ0.
Let σ(i) be the last configuration of the i-th round (i.e., the first configuration

196 T. Masuzawa and H. Kakugawa

p0 p1 p2 · · · pn−2 pn−1 pn · · · pn+#J−1

σ0 0 n − 2 n − 3 · · · 1 0
σ#J 0 n − 2 n − 3 · · · 1 0 0 · · · 0 0

n steps (n) (n − 1) (n − 2) (2) (1)

1 0 n − 2 · · · 2 1 0 · · · 0 0
n steps (n) (n − 1) (3) (2) (1)

1 1 0 · · · 3 2 1 · · · 0 0
· ·

σ#J+n(#J+1) 1 1 1 · · · J + 2 J + 1 J · · · 2 1
n steps (1) (J + 3) (J + 2) (J + 1) (3) (2)

2 1 1 · · · J + 3 J + 2 J + 1 · · · 3 2
n steps (2) (1) (J + 4) (J + 3) (J + 2) (4) (3)

3 2 1 · · · J + 4 J + 3 J + 2 · · · 4 3
· ·

n − 2 n − 3 n − 4 · · · 1 1 1 · · · 0 n − 2
n steps (n − 2) (n − 3) (n − 4) (n) (n − 1)

σ#J+n(#J+n−1) n − 1 n − 2 n − 3 · · · 1 1 1 · · · 1 0
n − 1 steps (n − 1) (n − 2) (2) (1)

n − 1 n − 1 n − 2 · · · 2 1 1 · · · 1 1
n − 2 steps (n − 2) (2) (1)

n − 1 n − 1 n − 1 · · · 3 2 1 · · · 1 1
· ·

n − 2 steps (#J + 2) (#J + 1) (#J) (2) (1)

n − 1 n − 1 n − 1 · · · (#J + 3) (#J + 2) (#J + 1) · · · 3 2
n − 3 steps (#J + 2) (#J + 1) (#J) (2) (1)

n − 1 n − 1 n − 1 · · · (#J + 4) (#J + 3) (#J + 2) · · · 4 3
· ·

3 steps (2) (1)

n − 1 n − 1 n − 1 · · · n − 1 n − 1 n − 1 · · · n − 2 n − 3
2 steps (1) (2)

n − 1 n − 1 n − 1 · · · n − 1 n − 1 n − 1 · · · n − 1 n − 1

Fig. 2. A trace of protocol execution

of the (i + 1)-st round) in E, and #J(i) be the number of joins executed in
E[σ0, σ(i)]. Then, the configuration σ(i) is safe if the following holds:

i ≥ 2n[σ0]+2#J(i)−1. ��

The execution shown in Fig. 2 requires 2n[σ0] + 2#J [i] − 3 rounds until it
reaches a safe configuration.

Theorem 2 implies that (at most) only two rounds can be spoiled by a single
join. As in the case of the step complexity, however, the single transient fault
spoils all the #J + n − 1 rounds between σ#J+1 and σ#J+n(#J+n−1).

4 Conclusions

We provided a novel observation about self-stabilization on frequently chang-
ing networks: by quantifying influence of steps of a self-stabilizing protocol and

Self-stabilizing in Spite of Frequent Changes of Networks 197

that of a topological change, efficiency of the convergence can be estimated with
considering topological changes that occur during the convergence. To show the
feasibility and effectiveness of the approach, we presented a simple self-stabilizing
mutual exclusion protocol on a frequently changing ring. The protocol can com-
plete the convergence from an arbitrary configuration and can continue its in-
tended behavior on a frequently changing ring.

In this paper, we considered only the dynamic changes of a ring network. But
the proposed approach can be applied to analyze execution of self-stabilizing
protocols in the environment where transient faults frequently occur. One of our
future work is to show the feasibility and effectiveness of the method in dealing
with transient faults as well as topological changes.

References

1. Baala, H., Flauzac, O., Gaber, J., Bui, M., and El-Ghazawi, T., A self-stabilizing
distributed algorithm for spanning tree construction in wireless ad hoc networks,
JPDC, vol. 63, pp. 97–104, 2003.

2. Chen, Y. and Welch, J. L., Self-stabilizing mutual exclusion using tokens in mobile
ad hoc networks, Proc. the 6th Dial-M, pp.34–42 (2002).

3. Dijkstra, E. W., Self-stabilizing systems in spite of distributed control, CACM,
vol. 17, no. 11, pp. 643–644, 1974.

4. Dolev, S., Self-stabilization, The MIT Press, 2000.
5. Dolev, S., Schiller, E., and Welch, J., Random walk for self-stabilizing group com-

munication in ad-hoc networks, Proc. the 21st SRDS, pp. 70–79, 2000.
6. Gupta, S. K. S., Bouabdallah, A., and Srimani, P. K., Self-stabilizing protocol for

shortest path tree for multicast routing in mobile networks, Proc. the 6th Euro-Par,
pp. 600–604, 2000.

7. Gupta, S. K. S., Srimani, P. K., Self-stabilizing multicast protocols for ad hoc
networks, JPDC, vol. 63, pp. 87–96, 2003.

8. Kakugawa, H. and Yamashita, M., A dynamic reconfiguration tolerant self-
stabilizing token circulation algorithm in ad-hoc networks, Proc. the 8th OPODIS,
pp. 179–186, 2004.

9. Li, X., Misra, J., and Plaxton, C. G., Active and concurrent topology maintenance,
Proc. the 18th DISC, pp. 320–334, 2004.

10. Li, X., Misra, J., and Plaxton, C. G., Brief announcement: Concurrent maintenance
of rings, Proc. of the 23rd PODC, p. 376, 2004.

Towards Automatic Convergence Verification of
Self-stabilizing Algorithms�

Jens Oehlerking, Abhishek Dhama, and Oliver Theel

Carl von Ossietzky University of Oldenburg,
Department of Computer Science,

D-26111 Oldenburg, Germany
oliver.theel@uni-oldenburg.de

Abstract. The verification of the self-stabilization property of a dis-
tributed algorithm is a complicated task. By exploiting certain analogies
between self-stabilizing distributed algorithms and globally asymptot-
ically stable feedback systems, techniques originally developed for the
verification of feedback system stability can be adopted for the verifica-
tion of self-stabilization of distributed algorithms. In this paper, we show
how for a certain subclass of dynamic systems – namely piecewise affine
hybrid systems – and distributed algorithms suitable to be modeled in
terms of these dynamic systems, a proof of convergence can be obtain
fully automatically. Together with some additional non-automated argu-
ments, the complete proof of self-stabilization can be derived.

Keywords: Distributed Algorithms, Self-Stabilization, Verification,
Convergence, Hybrid Systems, Piecewise Affine Systems, Lyapunov
Functions.

1 Introduction

Designing and implementing a crucial application in a distributed environment
by means of a self-stabilizing algorithm is highly advisable, in particular, if the
application is required to be very dependable. But, unfortunately, the verifica-
tion of the self-stabilization property of an algorithm is quite complicated [14].
Informally, an algorithm is self-stabilizing, if 1) it is guaranteed to return from
any state of the system state space to a particular set of legal states in finite
time, and 2) once in a legal state, the algorithm either remains in this state or
it only switches to other legal states without ever voluntarily leaving the legal
state set. The former property is called convergence whereas the latter one is
referred to as closure [20]. The specification of the set of legal states depends on
the algorithm and is often given via a certain state predicate. Since verification

� This work was partly supported by the German Research Foundation (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org) and the Grad-
uate School of Trustworthy Software Systems (GRK 1076/1, www.trustsoft.org).

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 198–213, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards Automatic Convergence Verification of Self-stabilizing Algorithms 199

of self-stabilization is tedious, the research community is working towards a sim-
plification of this important task. The ultimate vision is to provide for proofs of
self-stabilization in an automatic fashion.

One possible strategy in simplifying the verification task is the exploitation
of an analogy between self-stabilizing algorithms and stable feedback systems
that are used, for example, in electronic engineering. Here, informally, a feed-
back system is globally asymptotically stable (wrt. the equilibrium point) if the
system converges from anywhere in the system state space towards a unique
equilibrium point. An equilibrium point is a dedicated state of the system state
space which – once reached – is never voluntarily left by the feedback system [11].
Thus, a globally asymptotically stable feedback system also exhibits a certain
convergence as well as a closure property.

The aim of our work presented in this paper is to exploit this analogy for
more easily deriving proofs of self-stabilization. We will show how to model
distributed algorithms in terms of certain feedback systems, namely, discrete-
time hybrid systems. Discrete-time hybrid system are a special class of discrete-
time dynamic systems [25,1]. Generally, they exhibit various modes of operation.
In every mode, a potentially different set of difference equations may govern the
dynamic behavior of the overall feedback system. Modes are changed if certain
conditions apply. This conceptual model quite easily allows for the modeling of
distributed algorithms specified by collections of guarded commands [7]. The
idea is that – based on the modeling in terms of a discrete-time hybrid systems
– an algorithm may basically be analyzed wrt. self-stabilization by techniques
originally used for the verification of global asymptotic stability.

The exploitation of the analogy between self-stabilizing algorithms and sta-
ble feedback systems has previously been reported in literature. For example,
in [23], convergence verification of algorithms that can be modeled as linear
feedback systems has been described. Linear feedback systems are an easy sub-
class of piecewise affine hybrid systems used in this paper. In [22], verification of
self-stabilization is achieved using the so-called “Second Method” of Lyapunov
[15,13]. Although applicable to general dynamic systems, the Second Method
still requires the intuition of a proof designer even for the convergence part of
the proof: he or she must specify a particular function called Lyapunov function
which serves as variant function in the convergence verification procedure. Lya-
punov functions can be seen as generalized “energy functions” of the system, as
they are required to monotonously decrease over time and converge to zero at
an equilibrium point.

Contrary to the approaches cited above, the approach reported in this paper
is able to fully automatically derive convergence proofs for a subclass of general
dynamic systems, namely piecewise affine hybrid systems. The specification of
a suited Lyapunov function by a human designer is no further required but
automatically derived by the verification tool. Together with some additional
arguments, based on local reasoning, the complete proof of self-stabilization is
obtained.

200 J. Oehlerking, A. Dhama, and O. Theel

The paper is structured as follows: in Section 2, we briefly introduce an ex-
ample algorithm whose self-stabilization property is to be verified. In Section 3,
we present the system model and describe how the example algorithm can be
modeled in terms of a hybrid system. Section 4 presents the verification tech-
nique. We introduce the underlying concepts of hybrid system analysis required
for the understanding of the technique and apply it to the example algorithm.
Furthermore, we state additional arguments needed for completing the proof of
self-stabilization. Section 5 states related work in the fields of self-stabilization
and feedback systems. Finally, in Section 6, a conclusion together with an out-
look onto future work is given.

2 An Example Algorithm

In this section, we present a distributed algorithm, that – although quite sim-
plistic – is complex enough to show the overall functioning of the verification
technique. We would like to emphasize that the example algorithm per se is not
in the focus of our attention, but the automatic manner in which convergence
of this algorithm towards a certain state predicate can be proven.

The example algorithm has been motivated by a self-stabilizing general graph
leader election algorithm as given in [8]. The example algorithm presented here
identifies in a self-stabilizing way the minimum state value among N “worker
processes” and a “whiteboard process.” Once self-stabilized, all processes of the
distributed application adopt the minimum value as their own local state. Thus,
they agree on this particular value and the minimum value is “posted on the
whiteboard.” This value might then be exploited by a subsequent operational
phase for its own, specific purpose. Since we focus on how this minimum value is
identified in a self-stabilizing manner and convergence towards it is automatically
proven, subsequent exploitation of the agreed value is neither stated by the
algorithm presented here nor further discussed as it is out of the scope of this
paper.

We assume that the distributed application consists of N + 1 processes Pi,
i = 1, . . . , N +1. Process PN+1 acts as a so-called whiteboard. For ease of descrip-
tion, this process is synonymously called whiteboard process and is addressed as
process W . The other processes are called worker processes. The assumed com-
munication topology of all the processes participating in the distributed algo-
rithm is given in Fig. 1. Here, processes are represented as circles and possible
information flow between the processes is indicated by arrows. In particular,
the worker processes Pi, i = 1, . . . , N , may bi-directionally communicate with
the whiteboard process W , but not directly among each other. Communication
among worker processes must be achieved indirectly via the whiteboard process.

The process bodies of the processes of the distributed algorithm are given
as collections of guarded commands [7]. A guarded command is comprised of
a guard and an assignment statement. Guard and assignment statement are
separated by an arrow. A guard is a boolean expression over the local state
and/or communication variables. An assignment statement is an assignment

Towards Automatic Convergence Verification of Self-stabilizing Algorithms 201

W

P P P1 2 N

Fig. 1. Bi-directional communication topology among worker processes Pi, i =
1, . . . , N , and whiteboard process W

process Pi

var xi : integer {* local worker state *}
com var w {* w is a communication variable *}
begin

xi < w → w := xi

[] xi > w → xi := w
end

Fig. 2. Process Pi, i = 1, . . . , N , of the example algorithm

process W
var w : integer {* local whiteboard state *}
begin
{* no operation *}

end

Fig. 3. Whiteboard process W

over local variables and/or communication variables. The processes’ bodies are
shown in Figs. 2 and 3 for worker processes and for the whiteboard process,
respectively. The local state of a worker process Pi is given by the local variable
xi. After a process starts, this variable is assumed having an arbitrary value.
The communication variable w represents the local state of the whiteboard,
i.e., “what is currently posted on the whiteboard.” Communication is achieved
by the inspection and possible modification of communication variables. The
whiteboard process has a local variable w and does not use any communication
variable. By inspection (modification) of the communication variable w done by
a worker process, the local variable of the whiteboard process is read (written).
Thus, the attribute “local” in our model refers to the process where a variable
is implemented whereas the declaration as a “communication variable” specifies
that a variable local to some other process can locally be read or written by the
process declaring it.

While the distributed algorithm executes, all the processes cyclically evaluate
their guards. Guards which evaluate to “true” as well as the guarded commands
they belong to are called active. A global entity, called central daemon selects

202 J. Oehlerking, A. Dhama, and O. Theel

within each evaluation cycle exactly one active guarded command if one or more
guarded commands are active [7]. In other words: we assume serial execution
semantics. Selection is assumed being followed by an atomic execution of the
selected guarded command’s assignment statement. It is also assumed that the
central daemon selects guards – one after the other – in a fair manner implying
that in an infinitely long execution sequence each active guarded command is
selected infinitely often. This further implies that an active guarded command
is eventually selected [16].

Worker processes’ bodies consist of two guarded commands (see Fig. 2). The
first guarded command checks whether the local state value is less than the
value posted on the whiteboard. If this is the case (and the guarded command is
selected by the central daemon) then the value on the whiteboard is overwritten
by the local state value. The second guarded command functions analogously but
in “opposite direction:” if the local state value is more than the whiteboard value
then the former is overwritten by the latter. The process body of the whiteboard
process is empty (see Fig. 3). This process can be regarded as a passive entity
having a local state that is exclusively modified by the worker processes.

The N + 1 individual processes may be subject to faults compromising their
local state. Let the most recent initial local state be the local state which a
particular process has adopted due to the most recent failure situation or ini-
tialization and not due to the execution of an action. Then, we can formulate
the following theorem.

Theorem 1. Let x = [x1, . . . , xN , w]T ∈ RN+1 be a system state and let x0 =
[x0

1, . . . , x
0
N , w0]T be the system state where x0

i is the most recent initial local
state of process Pi and w0 is the most recent initial local state of process W .
Then, the algorithm is self-stabilizing with respect to a state predicate A where
A := {x | w = x1 = . . . = xN = min({x0

1, . . . x
0
N , w0})}. �

Theorem 1 states that in absence of newly occurring failures the processes of
the algorithm find the minimum value present in the system in a finite number
of steps. Once the processes reach a consensus then each of them exhibits the
minimum value as its local state.

In the next section, we introduce a system model that allows for the model-
ing of the example algorithm such that an automated convergence verification
technique can subsequently be applied.

3 System Model

To show self-stabilization of a certain class of distributed algorithms, we utilize
methods developed in the field of control theory. For feedback systems, stability is
of central importance [13], as it should not be possible to permanently unbalance
a feedback system through outside disturbances. We will show how the concept
of Lyapunov functions, that is widely used to prove stability of feedback systems,
can also be applied in the context of self-stabilizing distributed algorithms. In
this section, we will describe how to transform self-stabilization problems into

Towards Automatic Convergence Verification of Self-stabilizing Algorithms 203

problems of feedback system stabilization that imply the self-stabilization prop-
erty of the original system. Section 4 will then show the verification procedure
wrt. global asymptotic stability for those feedback systems.

3.1 Modeling Distributed Algorithms Through Hybrid Systems

Modeling distributed algorithms in terms of feedback systems is achieved by
means of difference equations. This means that the resulting feedback system
works in discrete time – each selected guard represents one “time tick” and a
“time tick” will also be taken if no guards are active. This ensures that the feed-
back system has an infinite timeline – a prerequisite for applying the verification
technique. Each guarded command of every process of a distributed application
is represented in the feedback system modeling by two different concepts: 1) a
difference equation and 2) a mode of operation. At run-time, from “time tick” to
“time tick” a particular mode (i.e. an active guarded command) is adopted (i.e.
is selected by the central daemon). If a mode is selected then the particular differ-
ence equation belonging to that mode is applied (i.e. its assignment statement
is atomically executed). In the feedback system community, feedback systems
acting with modes, mode transitions, and particular difference equations1 per
mode are referred to as hybrid systems [25]: difference equations govern the dy-
namics, while the mode switches are defined through a relation.We adopt the
concept of hybrid systems for our verification purposes, since it almost naturally
allows for the modeling of distributed algorithms given as collections of guarded
commands.

The following definition of a discrete-time hybrid systems uses a state vector
x representing the system state at a particular time instance. Every coordinate
of this vector stands for the value of a particular state variable at that time.
Using this vector notation, the difference equations of the feedback system can
then be represented by a single matrix equation.

Definition 1 (Discrete-time hybrid system[24]). An (autonomous)
discrete-time hybrid system is given by the difference equation

x[k + 1] = f(x[k], m[k]) (1)

and a relation

Φ ⊆ R
n × M × M (2)

where x[k] ∈ Rn is called the state vector of the hybrid system at time instant
k and m[k] ∈ M := {1, . . . , M} is its mode at time instant k.2 H = Rn × M
is called hybrid state space and (x, m) ∈ H is a hybrid state. The function f :
H → R

n describes the possible state vector modifications from one time instant
to the subsequent one. The relation Φ describes the possible mode switches, i.e.
1 Or differential equations in case of time-continuous feedback systems.
2 In a context where the value of k is not important, we will simplify x[k] to x and

m[k] to m.

204 J. Oehlerking, A. Dhama, and O. Theel

(x, m, m′) ∈ Φ if a mode switch from m to m′ can occur in state x. For determin-
istic systems, Φ reduces to a function mapping tuples from Rn×M to M. An infi-
nite sequence of hybrid states (x[k], m[k]), k ∈ N0, with (x[k], m[k], m[k+1]) ∈ Φ
for all k ∈ N0 that fulfills Eq. (1) is called a trajectory of the system. The tuple
(x[0], m[0]) is called the initial hybrid state of a trajectory. �
Each trajectory represents one possible execution of the system – deterministic
systems only allow one trajectory per initial hybrid state.

We prove stability for the class of self-stabilizing distributed algorithms that
can be modelled as piecewise affine hybrid systems. Let A be a distributed
algorithm and let x = [x1, · · · , xn]T be its state vector such that the assignment
statements of each guarded command can be represented as

xi[k + 1] =
n∑

j=1

aj
ixj [k] + bi, with aj

i , bi ∈ R

for each variable xi. Thus, all guarded commands exhibit assignment statements
of affine nature. Algorithm A can then be modelled as a piecewise affine hybrid
system. In that case, each guarded command corresponds to one mode of the
system. The dynamics of each mode m is then given by x[k + 1] = Amx + bm

where aj
i is the j-th entry of the i-th row of a matrix Am and bi is the i-th entry

of a vector bm. Additionally, a particular “liveness” mode must be added per
process for the case that no guard is active. For this particular “liveness” mode
l, Al is the identity matrix and bl the zero vector. Its guard is the negation of the
disjunction of all other guards of the process. Then, the mode transition relation
Φ can be stated as

(x, mi, mj) ∈ Φ iff Amix + bmi fulfills the guard of mj , mi, mj ∈ M. (3)

We focus on self-stabilization with respect to a particular predicate, namely
convergence to an equilibrium state. Such a state has one important character-
istic: once such an equilibrium state has been reached by the system, no further
changes to the system state occur in the absence of faults. Formally, sets of
equilibrium states wrt. a distributed algorithm can be defined as follows.

Definition 2 (Set of equilibrium states). Let A be a distributed algorithm
and let G be the set of all guards of A. Let X be the state space of A. For each
guard g ∈ G, let cg be the state change caused by the corresponding guarded
command. For distributed algorithm A, define

F := {x ∈ X | ∀g ∈ G : g(x) = true ⇒ x = cg(x)}.

F is then called the set of equilibrium states of distributed algorithm A. �

Based on this definition, one can define a predicate that exclusively holds when
an equilibrium state has been reached:

Definition 3 (Equilibrium predicate). For a distributed algorithm A with
a set of equilibrium states F , let B be a state predicate that holds for a system

Towards Automatic Convergence Verification of Self-stabilizing Algorithms 205

state x if and only if x ∈ F . Then, B is called an equilibrium predicate wrt. the
distributed algorithm A. �

Convergence with respect to an equilibrium predicate can then be shown by
means of the technique demonstrated in this paper. This will be explained in
detail in Section 4. In the following section, we show the re-modeling of the
example algorithm in terms of the system model.

3.2 Applying the System Model to the Example Algorithm

When applying the system to the example algorithm as described above, we
would obtain three modes per worker process: one for each guard (or: guarded
command) and one “liveness” mode for the case that no guard is active, i.e.
the case where xi = w. However, the dynamics of each of the other two modes
would be no different to the dynamics of the liveness mode: no state change
would occur, as the assignments w := xi and xi := w have no effect. Therefore,
in this particular example, we can spare the modeling of an explicit “liveness”
mode. We simply merge the “liveness” mode with both of the other modes,
resulting in just two modes per worker process. Assume that m1

i is the mode
corresponding to the (new) guard xi ≤ w for process Pi and that m2

i is the mode
corresponding to the (new) guard xi ≥ w. We define the state vector as

x := [x1, ..., xN , w]T ,

Then, for a system with three worker processes, we obtain 3×2 = 6 modes. The
dynamics of a particular mode m is given as x[k + 1] = Amx[k] + bm with

Am1
1

=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

⎤⎥⎥⎦ , Am2
1

=

⎡⎢⎢⎣
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , Am1
2

=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0

⎤⎥⎥⎦,

Am2
2

=

⎡⎢⎢⎣
1 0 0 0
0 0 0 1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , Am1
3

=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

⎤⎥⎥⎦ , Am2
3

=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1

⎤⎥⎥⎦
and bm being the 4-dimensional zero vector for all modes. According to Eq. (3),
for this example, the relation Φ is defined as follows:

(x, m1
i , m

1
j) ∈ Φ iff xj ≤ xi (4)

(x, m1
i , m

2
j) ∈ Φ iff xj ≥ xi (5)

(x, m2
i , m

1
j) ∈ Φ iff xj ≤ w (6)

(x, m2
i , m

2
j) ∈ Φ iff xj ≥ w (7)

The modes and their possible transitions are illustrated in Fig. 4. The boxes
represent the modes of the system whereas the arrows represent possible mode

206 J. Oehlerking, A. Dhama, and O. Theel

transitions. The system may stay in each mode as long as the corresponding
guard belonging to the mode is fulfilled - for this example this will at least be
the case as long as this mode is not left. As long as the system is in a particular
mode, its dynamics changes the system state, i.e., its assignment statement is
applied. However, due to fairness, we know that each mode will eventually be
left. When this occurs, a new mode whose guard evaluates to true at this point
of time is chosen. With the only assumption about the daemon being fair, this
implies that there are possible transitions from every mode to every other mode,
as long as the guard corresponding to the “target mode” holds true. Figure

g

g

g

g

g

1

1

1

2

3

3

2
1

2

1

g

m1

11

g

g

g

g

g

g

g

g

g

m

g

g

g

g

g

g

m

1

1

1

1

1

1

1

2

2 2

2

2

2

2

3 3

3

3

3

1

2

2

2

2
2

2

2

2

2

1

1 1

3
2

g2
2

1

1

2

2

1g2

p
2

p
3

m

1
3m

3g

g3
1

g2
2

2g1

g
1

1

g1
3

g
1

1g2

m1
1p

1

1

1

g

g

g

g

g2

1

1

2

2
2

1
3
2
3

Fig. 4. Hybrid system view

g2

2

m

m

Central
Daemon

g
3

2

g
3

1

m

m

m

m
2

3

1

3

2

2

2

1

1

1

g
1

1

g2

1

g
2

1

1

2

Fig. 5. Distributed algorithm view

5 shows an alternative view of the same system which is somewhat closer to
the original algorithm than to the hybrid system model. The box on the left
side represents the central daemon. Every other node represents a mode of the
system. Once a mode is left, control is returned to the daemon which chooses
the successor mode – in this example in a non-deterministic, fair fashion.

4 Proving Self-stabilization Through Lyapunov Functions

In this section, we present control-theoretic techniques for proving stability that
have been amended for the self-stabilization case. We show, how global asymp-
totic stability with respect to a set of equilibrium points can be proven. This
result can then be used to guarantee self-stabilization wrt. an equilibrium pred-
icate B for a distributed algorithm.

Towards Automatic Convergence Verification of Self-stabilizing Algorithms 207

4.1 Global Asymptotic Stability and Lyapunov Functions

The self-stabilization property wrt. an equilibrium predicate B of a distributed
algorithm with integer variables is equivalent to global asymptotic stability of
the associated hybrid system, i.e. convergence of the state vector towards a
set of equilibrium states. This set of equilibrium states represents the system
configurations where no further changes can occur – either all guards evaluate
to false or all guards that evaluate to true belong to actions that do not change
the current system state.

Definition 4 (Global asymptotic stability). A discrete-time hybrid system
according to Eqs. (1)–(2) is called globally asymptotically stable with respect to
a set of equilibrium states F ⊆ R

n, iff the first coordinate x[k] of all trajectories
(x[k], m[k]) of the system converge to F . �

To show global asymptotic stability of hybrid systems, a variation of the so-called
“Second Method” of Lyapunov [15] can be used. This method uses a function
that can be interpreted as measuring the system’s “energy” – if the “energy
level” of the system is constantly decreasing regardless where the system starts
from in the system state space and the “energy level” is converging to zero at a
unique equilibrium state then global asymptotic stability is proven. The function
capturing the “energy level” of the system is called Lyapunov function. Formally,
a definition of such a classical Lyapunov function for single-mode systems is given
by the following theorem.

Theorem 2 (Second Method of Lyapunov [15]). Let x[k + 1] = f(x[k])
be a discrete-time single-mode system with f(0) = 0.3 If there exists a function
V : Rn → R, such that

(L1) V (x) is positive definite, i.e. V (0) = 0 and V (x) > 0 for all x �= 0
(L2) V̇ (x) := V (f(x)) − V (x) is negative definite, i.e. V̇ (0) = 0 and V̇ (x) < 0

for all x �= 0
(L3) V (x) → ∞ for ‖x‖ → ∞

then the system is globally asymptotically stable in 0. V is then called a Lyapunov
function of the system. �

As we are interested in proving convergence wrt. a set of equilibrium points F
with 0 ∈ F and not merely wrt. a single equilibrium point, we replace condition
(L2) by (L2’) as given below.

(L2’) V̇ (x) := V (f(x)) − V (x) < 0 for all x /∈ F and V̇ (x) = 0 for all x ∈ F .

The Lyapunov function is only required to drop over time when the current state
is not an element of F . This means that we only require the “energy level” of a
system under consideration to decrease whenever it is not already in an equilib-
rium state. Once an equilibrium state has been reached, it will not be left again
– therefore, the Lyapunov function will remain unchanged from that point on.
3 0 denotes the origin of R

n.

208 J. Oehlerking, A. Dhama, and O. Theel

For multi-mode systems – such as hybrid systems – a standard approach is
to search for a common Lyapunov function covering all existing modes of the
system. In other words, each mode is viewed as a separate single-mode sys-
tem and a Lyapunov function must be identified that fulfills conditions (L1),
(L2’), and (L3) for all modes at the same time. Other possible approaches re-
quire a partitioning of the state space into disjoint regions [9,18] which can be
less conservative. However, the strong non-determinism we find in self-stabilizing
systems (visualized by the fully connected transition graph as given by Fig. 4 for
the example) significantly reduces the gain of these methods, while still increas-
ing computation time and risk of numerical problems. Therefore, we decided to
pursue the identification of a single Lyapunov function for the entire state space.

4.2 Automatic Computation of Lyapunov Functions

If the dynamics exhibited in each mode is affine, i.e. in Eq. (1), we have f(x, m) =
Amx + bm, where Am ∈ Rn×n, bm ∈ Rn for each mode m then the Lyapunov
function can efficiently be computed. Systems of this class are called piecewise
affine (PWA). We use quadratic Lyapunov function candidates and reduce the
problem of finding a Lyapunov function to convex optimization [4] via so-called
linear matrix inequalities (LMIs) [3].

Definition 5 (Quadratic expressions). A function of the form

g(x) = xT Px + 2pT x + π, (8)
P ∈ R

n×n, p ∈ R
n, π ∈ R

is called quadratic expression. �

For convenience, the function can be rewritten as

g(x) = x̃T P̃ x̃ (9)

with

x̃ :=
[
x
1

]
, P̃ :=

[
P p
pT π

]
LMI problems are of the following form.

Find ki ∈ R, such that xT (F0 +
∑N

i=1 kiFi)x ≥ 0 for all x ∈ Rn

where the Fj ∈ Rn×n, 0 ≤ j ≤ N , are fixed. In short, this can also be written as

Find ki ∈ R, such that F0 +
∑N

i=1 kiFi ≥ 0

where “≥ 0” denotes positive definiteness. LMI problems are convex optimiza-
tion problems over a semidefinite cone. Therefore, they can be solved using
standard convex optimization methods [4]. To describe the guards and the set of
equilibrium points F , we apply the so-called S-Procedure, originally introduced

Towards Automatic Convergence Verification of Self-stabilizing Algorithms 209

in [26]. This method allows us to express local conditions as part of an LMI
problem by including an additional matrix term. This term describes the region
where we want the condition to hold. A detailed explanation on how to obtain
these matrix terms can be found in [18]. For the sake of brevity, we just give
the resulting LMI problem here. The matrix P̃ , which is part of its solution,
represents the quadratic Lyapunov function that guarantees convergence toward
the equilibrium set F .

Theorem 3 (Lyapunov function identification based on [9]). For each
system mode m, find a family of matrices Q̃k

m ∈ Rn×n with x̃T Q̃k
mx̃ ≥ 0 for

all x that fulfill the corresponding guard. Furthermore, for each mode m, find a
matrix R̃m ∈ Rn×n with x̃T R̃mx̃ > 0 for all x with Amx+bm �= x and x̃T R̃x̃ = 0
otherwise.

Let

Ĩ :=
[

I 0
0T 0

]
, Ãm :=

[
Am bm

0T 0

]
where I is the n × n identity matrix,
Then, a PWA system

x[k + 1] = Amx[k] + bm

Φ ⊆ R
n × M × M

is globally asymptotically stable in 0 if the following LMI problem has a solution:

Find β ∈ R, α ≥ 0, ηk
m ≥ 0 and P̃ ∈ Rn+1×n+1, such that

αĨ ≤ P̃ ≤ βĨ and (10)

ÃT
mP̃ Ãm − P̃ +

κm∑
k=1

ηk
mQ̃k

m + R̃m ≤ 0 for all modes m (11)

�
This LMI problem can easily be cast into a single standard form LMI problem.
The Lyapunov function certifying stability of the system can then be obtained
by V (x) = x̃T P̃ x̃.

Using the method outlined above, one can prove global asymptotic stability
of the system with respect to the set F of equilibrium points. To draw the con-
clusion that the set F is indeed reached in finite time by all possible trajectories
instead of being approached asymptotically, one needs to argue about the values
the system variables can adopt. If there is a constant k ∈ R, so that for all pairs
of possible state vectors x and x′, x �= x′, ||x − x′|| > k then this implies that F
is reached in finite time. If, for example, all possible variable values are integers
then this constraint always holds.

The closedness of F is already implied by the fact that all its points are equi-
libria – no further state changes can occur in F . Therefore, the system will remain
in F after entering, implying self-stabilization with respect to predicate B.

210 J. Oehlerking, A. Dhama, and O. Theel

4.3 Proving Self-stabilization of the Example Algorithm

In this section, we apply the verification technique described above to the exam-
ple algorithm introduced in Section 2 and modeled as a piecewise affine hybrid
system as given in Section 3.2.

The example algorithm leads to an LMI problem that contains one instance
of Eq. (10) and two instances of Eq. (11) per worker process resulting in a total
of 7 LMI problems to be solved. The matrices Q̃k

m are obtained from the guards
as described in [18–pages 103ff.]. As an example, the Q̃k

m1
1

matrices for mode m1
1

representing the first guarded command of worker process P1 in a three-worker-
processes system are as follows:

Q̃1
m1

1
=

⎡⎢⎢⎢⎢⎣
−2 0 0 1 0

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ , Q̃2
m1

1
=

⎡⎢⎢⎢⎢⎣
0 −1 0 0 0

−1 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦

Q̃3
m1

1
=

⎡⎢⎢⎢⎢⎣
0 0 −1 0 0
0 0 0 0 0

−1 0 0 1 0
0 0 1 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ , Q̃4
m1

1
=

⎡⎢⎢⎢⎢⎣
0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0

−1 0 0 2 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦

Q̃5
m1

1
=

⎡⎢⎢⎢⎢⎣
0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

−1 0 0 1 0

⎤⎥⎥⎥⎥⎦
In a similar way, one can obtain the R̃m matrices, for example

R̃m1
1

=

⎡⎢⎢⎢⎢⎣
1 0 0 −1 0
0 0 0 0 0
0 0 0 0 0

−1 0 0 1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
A solution can then be found through convex optimization and semidefinite
programming software like CSDP [2]. For a three-worker-processes system, the
following matrix represents a solution. The numerical values being solutions to
other unknown variables occurring in the LMI problems are purely technical and
not important for the description of the actual Lyapunov function. Therefore,
they are omitted here.

P̃ =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦

Towards Automatic Convergence Verification of Self-stabilizing Algorithms 211

This implies that V (x) = x̃T P̃ x̃ = x2
1 + x2

2 + x2
3 + w2 is a possible Lyapunov

function, proving global asymptotic stability of the system with respect to the
equilibrium set F = {[x1, x2, x3, w]T | x1 = x2 = x3 = w}. As all variables are
integers, this implies that each system trajectory will eventually enter F (see
Section 4.2). An analogous proof exists for any number of worker processes.

To complete the proof of Theorem 1, it remains to be shown that the state
the system converges to is indeed given by x with w = x1 = . . . = xN =
min({x0

1, . . . , x
0
N , w}). So far we have only proven that the system converges to

an equilibrium state with w = x1 = . . . = xN . This can be done by the following
local reasoning. Whenever a guarded command is executed then a value not being
the lowest value in the system is overwritten with a lower value. Furthermore,
the algorithm never introduces new values into the system that have not been
present before. Therefore, min({x0

1, . . . , x
0
N , w}) will always be the value of at

least one variable of the system. This means the system will always converge
towards state x with w = x1 = . . . = xN = min({x0

1, . . . , x
0
N , w}) – all other

variable values are eventually eliminated.

5 Related Work

Traditionally, automatic verification methods for self-stabilizing algorithms have
been logic-based. Temporal logic was used to provide a framework and proof rules
for analysis of stabilizing systems in [21]. An extension of programming logic
UNITY [6] along with theorem prover HOL [10] was used to support computer-
aided verification of self-stabilizing algorithms [19]. Both these approaches re-
quire considerable assistance from the algorithm designer in order to derive the
proofs. Other proof methods include variant functions, scheduler-luck games and
the convergence stairs method [8]. But these methods can not be automated and
proofs must be drawn “by hand.”

In [12] and [18], the construction of piecewise quadratic Lyapunov functions
for continuous-time systems is discussed. These approaches allow for a parti-
tioning of the state space into regions, each with a separate quadratic function.
Branicky [5] gives an overview of the use of multiple Lyapunov functions for
a single feedback system. In [9], it is shown that this approach can also be
used for the discrete-time domain. However, in the context of self-stabilization,
these state space partitionings – unfortunately – offer little advantage, as the se-
vere non-determinism leads to strong dependencies among the various the “local
Lyapunov functions.” If a specific, deterministic implementation of a daemon is
assumed, this disadvantage vanishes. In such a case, there is a higher degree of
freedom in the choice of Lyapunov function, enlarging the class of systems for
which stability can be proven.

In [17], the authors consider certain higher-degree polynomial Lyapunov func-
tions that can also be found through an LMI approach. This approach can also
be used in conjunction with a partitioning into regions with separate Lyapunov
functions. However, the increased complexity and the higher risk of running into
numerical problems makes this approach less successful than the one presented
in this paper.

212 J. Oehlerking, A. Dhama, and O. Theel

6 Conclusion and Future Work

In this paper, we have presented a technique for automatically proving con-
vergence of distributed algorithms with respect to set of equilibrium states. To
achieve this, we modelled the distributed algorithm as a piecewise affine discrete-
time feedback system and subsequently used Lyapunov functions to prove global
asymptotic stability with respect to those equilibrium states. For systems with
integer variables representing local states, global asymptotic stability implies
convergence with respect to the set of equilibrium states. Closure of this set is
given implicitly since no equilibrium state can be left once it has been entered.
Based on an example, we have demonstrated the viability of the proposed verifi-
cation technique for self-stabilizing distributed algorithms by employing convex
optimization software.

Future work will include the extension of the approach to self-stabilizing dis-
tributed algorithms that cannot be expressed by piecewise affine dynamics: in
those cases, a certain “embedding of the system” by two piecewise affine systems
may yield a Lyapunov function able to prove global asymptotic stability of the
system under consideration [18]. Furthermore, in some cases, it might be advan-
tageous to exploit the piecewise quadratic Lyapunov function approach as given
in [9] and [12] or the sums-of-squares approach proposed in [17], especially for
systems with complex processes. Our goal is to integrate these technique into a
single automatic verification tool: this tool will 1) classify the self-stabilizing dis-
tributed algorithm under consideration in order to determine the most promising
verification approach and 2) apply the technique.

References

1. R. Alur, T. A. Henzinger, G. Lafferiere, and G. J. Pappas. Discrete Abstractions
of Hybrid Systems. Proceedings of the IEEE, 88(7):971–984, 2000.

2. B. Borchers. CSDP, a C library for semidefinite programming. Optimization Meth-
ods and Software, 10:613–623, 1999.

3. Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan.
Linear Matrix Inequalities in System and Control Theory. SIAM, 1994.

4. Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, 2004.

5. Michael S. Branicky. Multiple Lyapunov functions and other analysis tools for
switched and hybrid systems. IEEE Transactions on Automatic Control, 43(4),
April 1998.

6. K. Mani Chandy and Jayadev Misra. Parallel Program Design : A Foundation.
Addison-Wesley Publishing Company, 1988.

7. Edsger W. Dijkstra. Guarded commands, nondeterminancy, and formal derivation
of programs. Communications of Association for Computing Machinery, 18:453–
457, 1975.

8. Shlomi Dolev. Self-stabilization. MIT Press, 2000.
9. Gang Feng. Stability analysis of piecewise discrete-time linear systems. IEEE

Transactions on Automatic Control, 47(7):1108–1112, 2002.

Towards Automatic Convergence Verification of Self-stabilizing Algorithms 213

10. Mike J.C. Gordon and Tom F. Melham. Introduction to HOL. Cambridge Univer-
sity Press, 1993.

11. W. Hahn. Stability of Motion. Springer-Verlag, 1967.
12. Mikael Johansson and Anders Rantzer. Computation of piecewise quadratic Lya-

punov functions for hybrid systems. IEEE Transactions on Automatic Control, 43,
1998.

13. R. E. Kalman and J. E. Bertram. Control System Analysis and Design Via the
“Second Method” of Lyapunov. Transactions of the ASME, Journal of Basic En-
gineering, pages 371–400, 1960.

14. J. L. W. Kessels. An Exercise in Proving Self-Stabilization with a Variant Function.
Information Processing Letters, 29:39–42, 1988.

15. M. A. Lyapunov. Problème général de la stabilité du movement. Ann. Fac. Sci.
Toulouse, 9:203–474, 1907. (Translation of a paper published in Comm. Soc. math.
Kharkow, 1893, reprinted in Ann. math. Studies No. 17, Princeton University Press,
1949).

16. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc.,
1996.

17. Antonis Papachristodoulou and Stephen Prajna. On the construction of Lyapunov
functions using the sums of squares decomposition. In Proceedings of IEEE Con-
ference on Decision and Control, 2002.

18. Stefan Pettersson. Analysis and Design of Hybrid Systems. PhD thesis, Chalmers
University of Technology, Gothenburg, 1999.

19. I.S.W.B. Prasetya. Mechanically Supported Design of Self-stabilizing Algorithms.
PhD thesis, Inst. of Information and Comp. Science, Utrecht Univ., 1995.

20. Marco Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45–67, 1993.
21. Michael Siegel. Phased Design and Verification of Stabilizing Systems. PhD thesis,

University of Kiel, 1996.
22. Oliver Theel. Exploitation of Ljapunov Theory for Verifying Self-Stabilizing Al-

gorithms. In Maurice Herlihy, editor, Proc. of the 14th Symposium on Distributed
Computing (DISC’00), Toledo, Spain, LNCS Vol. 1914, Lecture Notes in Computer
Science, pages 209–222. Springer-Verlag, October 2000.

23. Oliver Theel and Felix C. Gärtner. An Exercise in Proving Convergence through
Transfer Functions. In Proc. of the 4th Workshop on Self-Stabilizing Systems
(WSS’99), being part of the 19th International Conference on Distributed Com-
puter Systems (ICDCS’99), Austin, TX, U.S.A., pages 41–47. IEEE, June 1999.

24. Fabio Danilo Torrisi and Alberto Bemporad. Discrete-time hybrid modeling and
verification. In Proc. of the 40th IEEE Conference on Decision and Control, De-
cember 2001.

25. H. S. Witsenhausen. A Class of Hybrid-State Continuous Dynamical Systems.
IEEE Trans. on Automatic Control, 11(2):161–167, 1966.

26. V. Yakubovich. S-procedure in nonlinear control theory. Vestnik Leningrad Univ.,
4:73–93, 1977.

About the Self-stabilization of a Virtual
Topology for Self-organization in Ad Hoc

Networks

Fabrice Theoleyre and Fabrice Valois

CITI, INRIA ARES, INSA Lyon,
21 av Jean Capelle, 69621 Villeurbanne Cedex, France

{fabrice.theoleyre, fabrice.valois}@insa-lyon.fr

Abstract. Ad hoc networks are spontaneous wireless networks without
any wired infrastructure, composed of mobile terminals. We assume that
nodes must collaborate to set up an efficient network, such a collabora-
tion requiring a self-organization in the network. We proposed a virtual
structure to organize the network: the backbone is a connected structure
helping to optimize the control traffic flooding. Clusters form services
area, hierarchizing the network, electing one leader per cluster. Since the
ad hoc topology is volatile, the self-stabilization of the algorithms is vi-
tal. The algorithms for both the construction and the maintenance are
analytically studied to prove the self-stabilization of the proposed self-
organization. Thus, the virtual structure is efficient and very scalable, a
local topology change impacting only locally the virtual structure. Fi-
nally, simulations investigate the behavior and the performances of the
virtual structure.

1 Introduction

MANet (Mobile Ad hoc NETworks) are spontaneous topologies of mobile nodes
where each of them collaborate in order to give services like routing, localization,
etc. It can be used to offer a spontaneous network infrastructure. Each terminal
can communicate via wireless links without preconditioned fixed infrastructure.
The network must function autonomously, without any human intervention. To
send packets from a source to a destination, either the destination is in the radio
range of the source or intermediaries nodes must help to forward the packets. To
reach such a goal, the nodes must collaborate and exchange control information
to set up routes in the network. Indeed, each node is both client and router.
Because of the nodes mobility, radio links are created and deleted continuously
leading to topology changes. And finally, routes are volatile. So, self-adaptation
of the network to the dynamicity is a major issue of MANet. Ad hoc networks
can be connected to the Internet, via a dedicated device, the wireless access point
(AP), gateway from the ad hoc network to the wired world. Such networks are
often called hybrid networks constituting wireless multihops cellular networks.

In our point of view, self-organization can answer to the above key prob-
lems. Self-organization deals with virtual topologies in order to simplify ad hoc

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 214–228, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

About the Self-stabilization of a Virtual Topology for Self-organization 215

topologies. For example, virtual topologies can be constituted by a backbone
[10], or a combination of a backbone and clusters [8]. The goal is to offer control
on the MANet. According to us, virtual topologies allow scalability (in creating
a hierarchy useful for example for routing protocols), facilitate integration of
MANET in wired or cellular networks (with a virtual backbone), hide topology
changes (in creating a stable macroscopic view), take heterogeneity into account
(in distributing unfairly the load in the network). The mobility represents a key
challenge in MANet. As each node is mobile, many radio links appear and disap-
pear, occurring many topology changes. Virtual structures must remain efficient
along the time. Hence, it must be continuously maintained, such that structural
constraints hold. The structure must reconstruct or repair itself with a minimal
delay. Such a property conduct to the self-stabilization properties.

In this paper, we focus on the demonstration of self-stabilization properties of
the virtual structure described in [8]. This article makes two main contributions
to the understanding of ad hoc self-organized virtual structures. First, it proves
theoretically self-stabilized properties of the virtual structure. Secondly, it pro-
poses an evaluation of convergence time of the algorithms through simulations.

Next, we will expose related work about self-organized virtual structures in ad
hoc networks. Section 3 presents the distributed algorithm of the studied virtual
structure. Section 4 presents the notations and complexity results. Section 5
presents an analytical study of the self-stabilized properties for the backbone,
and section 6 is dedicated to the clusters. Results of simulations are given in
section 7. Finally, we conclude this work and give some perspectives.

2 Related Work

Clusters. Clustering consists in grouping nodes geographically close. A cluster-
head is often elected per cluster, managing its services area. Each node must be
kcluster hops far at most from its clusterhead. Let Nk(u) be the k-neighborhood
of u, i.e. the set of nodes at most k hops far from u.

[6] is the most used algorithm to construct clusters. In the first step, each
node initiates a neighborhood discovering. According to this information, each
node decides to become clusterhead or not. The decision is propagated in the
neighborhood so that each node which has not chosen any clusterhead yet takes
the source as its new clusterhead. The decision could be based on several metrics
(node identifier (id), mobility, location. . .). The authors propose to reconstruct
the cluster if the diameter constraint of 3 hops is violated.

Backbones. A backbone could be well modeled with a Minimum Connected
Dominating Set (MCDS): each node must be neighbor of at least one node
of the MCDS which is a connected structure with a minimal cardinality. The
construction of an MCDS is a NP-hard problem.

Many articles propose to construct a CDS in 2 steps. First, a dominating
set (DS) is created, where each node is neighbor of a node in the DS. Sec-
ondly, the DS is interconnected to form a connected structure. Usually, 4 nodes

216 F. Theoleyre and F. Valois

states exist: dominator(in the CDS)/dominatee(not in the CDS)/active(in elec-
tion)/idle(waits for the construction). In [2,3,1], a leader declares itself dominator
and broadcasts its decision: its neighbors become its dominatees. The neighbor
of dominatees become active. The active nodes with the highest weight in their
neighborhood become dominators, and the process keeps on. Then, the DS must
be interconnected. [3] proposes an iterative exploration requiring an important
overhead and delay. [1] proposes a best effort approach, sending invite packets.

To the best of our knowledge, only [10] proposes a localized algorithm. A
node is elected as a CDS member if it has 2 disconnected neighbors. Rules
for a redundancy elimination are proposed: a node with a set of 2 connected
neighbors of higher id which cover its whole neighborhood becomes dominatee,
else it becomes dominator. This rule could be extended as: a node with a set
of neighbors of higher id forming a CDS and covering its whole neighborhood
becomes dominatee, else it becomes dominator. These rules create a CDS.

Self-stabilization. Self stabilization was first defined by Dijkstra [4]: a system
is self-stabilizing when ”regardless of its initial state, it is guaranteed to arrive
at a legitimate state in a finite number of steps.” [7] presents bases of the self-
stabilization in the fault tolerance domain. In ad hoc networks, topology changes
occur frequently, and could be modeled as temporary faults. In consequence, the
self-stabilization properties of an algorithm are essential in the ad hoc networks.
Recently, [5] studied a multicast protocol in ad hoc networks. To the best of our
knowledge, no prior work was done to study the self-stabilization properties of
the Connected Dominating Sets structures in ad hoc networks.

3 The Virtual Topology for Self-organization

We proposed in [8] a virtual topology for self-organization. This topology helps
to structure the network, to optimize floodings, to create a hierarchy. . . It is
constituted by a backbone and clusters. First, a k-neighborhood discovering is
initiated. Then, the algorithm constructs a kcds-CDS. Finally, some dominators
are elected as clusterheads such than kcluster-clusters are formed.

3.1 Backbone

Construction. The following nodes states exist: dominator / dominatee / ac-
tive (in election) / idle (initial state). The Access Point (AP) acts as leader and
becomes the first dominator. It propagates its new state kcds hops far using an
hello packet. The following rules are applied when a node receives an hello to
construct a kcds-Dominating Set:

1. An active or idle node which receives an hello from a dominator D, kcds

hops far, becomes dominatee and chooses D as parent
2. An idle node which receives an hello from a dominatee D, kcds hops far,

becomes active and triggers a timer of Δelection seconds. Δelection is the
maximal round-trip-time to a farthest kcds-neighbor.

About the Self-stabilization of a Virtual Topology for Self-organization 217

3. After the timer expiration, a node which owns the highest weight among its
active kcds-neighbors becomes dominator. We can remark that a dominator
has no parent during this phase.

The interconnection is inspired from [1]: the leader sends a cds-invite,
with a TTL 2 · kcds + 1. A dominator without parent chooses the source as
new parent and sends a cds-join along the inverse route. Each intermediary
dominatee becomes dominator and sets its parent as the next hop in the route. A
dominator which sent a cds-join can send a cds-invite for other dominators in
its (2kcds +1)-neighborhood. The dominators form finally a kcds-CDS structure.

Maintenance. A node sends periodically hellos containing its id, weight, cds-
state, parent in the CDS and ids of its 1-neighbors. hellos being forwarded kcds

hops along, each node has a complete knowledge of its kcds-neighborhood. Hence,
each dominatee can verify that its parent is still valid: it is at most kcds hops far,
is dominator, and there exists a dominatee neighbor having the same parent and
being nearer of this parent (to force connectivity of the cds-dominance area).

The backbone must remain connected. Hence, the AP sends periodically
ap-hellos, forwarded only by dominators. If a node misses several ap-hellos
from its parent in the backbone, it considers itself disconnected and engages
a backbone reconnection. It sends a cds-request in broadcast with a TTL of
2kcds+1. At least one connected dominator is at most 2kcds+1 hops far. It will
reply with a cds-reply following the inverse route. Finally, the disconnected
dominator sends a cds-accept to force intermediaries to become dominators.

To avoid a constant growth in the size of the backbone, we propose a mech-
anism to eliminate redundancy. A dominator is useless if it has no dominatee at
exactly kcds hops and no dominator for which it is a parent. An useless domina-
tors sends a useless-advertisement forcing all its children in the backbone to
choose its parent as new parent.

If many reconnections occur in the backbone, the load on the radio medium
could be important. Hence, many collisions occur, disturbing the reconnection
process. A dominator which tries many unsuccessful cds-reconnect sends a
break in broadcast and takes the idle state. When a node receives a break from
its parent, it becomes idle and forwards the message. Finally, the whole branch
becomes idle. A connected dominator neighbor of the idle area will trigger the
reconstruction, acting like the construction.

3.2 Clusters

Construction. As the backbone was constructed during the first phase, we
use naturally it for the cluster construction. Only dominators participate to
the election, reducing the overhead. Moreover, a clusterhead is forced to be
dominator: a clusterhead will use further the backbone to optimize the floodings.

During the construction, each dominator begins to send periodically clus-
ter-helloswhen all its neighborhood has either the dominator or the dominatee
state. cluster-hellos contain the address of the source and its weight. Theses

218 F. Theoleyre and F. Valois

packets are forwarded kcluster − kcds hops along, uniquely by virtual neighbors.
A virtual neighbor of N is either a parent of N in the CDS, or a child (a node
for which N is a parent). A cluster-hello is forwarded only if it comes from
a parent or a child in the CDS. A node is elected clusterhead if it has the high-
est weight among all its kcluster − kcds-virtual neighbors without clusterhead.
An elected clusterhead sends a gratuitous cluster-hello to advertise its deci-
sion. A dominator without clusterhead chooses the source of the cluster-hello
as clusterhead if the previous hop has also chosen this clusterhead, and if the
clusterhead is at most kcluster − kcds hops far. Such a condition forces the con-
struction of connected clusters. Since dominatees are at most kcds hops far from
their parent, the algorithm constructs clusters of radius kcluster .

Maintenance. cluster-hellos are not yet required for the maintenance. How-
ever, each node adds in its hellos its clusterhead, the relay and the distance
toward it. Hence, each dominator can easily verify that its clusterhead is valid,
i.e. a virtual neighbor has the same clusterhead and is at most kcluster −kcds −1
hops far from its clusterhead.

If a node A loses its clusterhead Cold, i.e. Cold is no more valid, it searches
a new candidate: a node is a virtual neighbors and announces a clusterhead at
most kcluster − kcds − 1 hops far. When a node changes its clusterhead, it sends
immediately a gratuitous hello to force other nodes to change potentially their
own clusterhead. In this way, the convergence delay is reduced.

We propose a procedure to eliminate redundancy. If a clusterhead has no vir-
tual neighbor having chosen it as clusterhead, the node is an useless clusterhead.
Since a cluster is connected, no other node has a fortiori chosen it as clusterhead.
A useless clusterhead tries to find a new valid clusterhead and become client.

4 Preliminaries

To study the ad hoc networks, we use the graph theory: a node in the network is
represented by a vertex, and there exists one edge from one vertex to another iff
there exists a radio link between the two nodes. Since we use only bidirectional
links, we study undirected graphs. We note G(V,E) the graph, V being the set
of vertices and E the set of edges. We assume that the graph is connected. We
use the following notations:

– n: the cardinality of the network (= |V |)
– D: the set of dominators: |D| is the CDS cardinality
– Nk(u): the k-neighborhood of u
– Δk(u): the number of k-neighbors (Δk(u) = |Nk(u)|), i.e. the number of

nodes at most k hops far. By convention, Δ1(u) = Δ(u)
– Δ′

k(u): the number of k-virtual-neighbors. A virtual neighbor of N is either
the parent or a child of N the CDS. We can remark that Δ′

k(u) ≤ Δk(u)
– w(u): the weight of the node u
– d(u, v): the distance in hops from u to v
– hT : the maximal distance from one node to the root of T (the height of T)

About the Self-stabilization of a Virtual Topology for Self-organization 219

– dominator(u): is the parent of a dominatee u. dominator(u) ∈ Nkcds
(u)

– parent(u): is the parent of a dominator u. parent(u) ∈ N(u)

5 Backbone Self-stabilization

Ad hoc networks presenting a volatile topology, the virtual structure must adapt
itself to changes. We present here and in the following section results about self-
stabilization of the virtual structure presented in section 3. The construction
algorithms converge in a finite time. In the same way, the maintenance algorithms
form a valid virtual structure if the number of topology changes (edge/vertex
addition or deletion) is finite and sufficiently inter-spaced. We assume that the
graph associated to the ad hoc network is connected. If during the construction,
not enough time is sufficient to let the structure converge because of unknown
reason, the algorithm will converge during the maintenance step. More details
are given in the long version of this article[9].

Hypothesis 1. We assume that the radio topology is stable after a list of
changes, constituted by a sum of elementary topology change (vertex/edge dele-
tion/addition). The inter-changes time is sufficient to let the algorithm converge.

We propose here to demonstrate that the construction algorithm provides a
kcds-Connected Dominating Set (CDS). We prove first that the backbone forms
a kcds-Dominating Set (DS), then a connected structure, being moreover a tree.
Same proofs are given for the maintenance.

5.1 Construction

Creation of a kcds-Dominating Set

Theorem 1. The algorithm of the first phase terminates and forms a kcds-DS.

Lemma 1. Every vertex has either the dominator or the dominatee state at the
end of the first step.

Proof. Let separate the problem in 2 cases:

• Let assume that an idle vertex I exists, and that there exists another not-idle
vertex N in the connected component including N . Let c=〈I, c1, c2, ..., ck, N〉
be a path from I to N . All the kcds-neighbors of I are idle, else I would have
change its state. Thus, {cj}j∈[1..kcds] are idle. In the same way, the recurrence
formula is: ∀i, {ci·kcds+j}j∈[1..kcds] idle ⇒

{
c(i+1)·kcds+j

}
j∈[1..kcds]

idle. In
consequence, N must be idle. The connected component is only constituted
by idle vertices. However, at least the leader is not idle. This leads to a
contradiction.

• Let assume that a vertex N is active. If a kcds-neighbor is dominator, N
would be dominatee. In the same way, if all the kcds-neighbors are domina-
tees, N would be dominator. If N is the active node of highest weight in
its kcds-neighborhood, then N is elected dominator after Δelection time at
most. So, there exists A1, active, at most kcds hops far and with an higher
weight than N .

220 F. Theoleyre and F. Valois

Let Ak be the graph so that its vertices are the active vertices of G during
the kth round, and so that there exists an edge from a vertex ai to a vertex
aj if and only if w(ai) < w(aj). Ak is acyclic and has a finite cardinality, in-
ferior or equal to n. The second property is trivial, let demonstrate the first
property. Let c = 〈c0, c1, ..., ck〉 be a cycle in Ak. An edge exists from ci to
ci+1, i.e. w(ci) < w(ci+1) with i ∈ [1..k − 1]. Transitively, w(c0) < w(ck). How-
ever, c is a cycle: the edge (ck,c0) exists and w(ck) < w(c0), this leads to a
contradiction.

The graph Ak contains at least a sink ak, i.e. a vertex has a null outer
degree. After Δelection seconds, ak will be elected and become dominator, its
kcds-neighbors becoming its dominatees. Let Ik be the set of idle vertices in G
during the kth round. During the round k, at least one vertex ak becomes dom-
inator. So, ak /∈ Ak+1 ∪ Ik+1. The kcds-neighbors of ak in Ak ∪ Ik become its
dominatees. Simultaneously, some vertices are extracted from Ik and added to
Ak+1. So |Ik| + |Ak| ≥ |Ik+1|+ |Ak+1|+ |{ak}|. In consequence: |An| = |In| = 0.
In consequence, the algorithm will converge at the end of the first phase to a
graph with no active vertex.

Lemma 2. Every vertex is at most kcds hops far from a dominator, or is itself
a dominator, i.e. the graph of dominators forms a kcds-DS.

Proof. The proof comes directly from the lemma 1: at the end of the first phase,
only dominatees and dominators exist: a dominatee changes its state because
a dominator is at most kcds hops far (by construction) and a vertex elected
dominator remains dominator.

Formation of a kcds-CDS

Theorem 2. The set of dominators forms at the end of the construction a con-
nected set of kcds-dominating, i.e. a kcds-CDS.

Property 1. Let c be a path between 2 dominators D1 and Dk. c follows the prop-
erty 1 if it is composed by a set of i dominators, interspaced consecutively from
each other by at most 2 · kcds dominatees: ∃c = 〈D1, d1, ..., dj , D2, dj+1, ..., Di〉
such that dl are dominatees, and such that dc(Di, Di+1) ≤ 2 · kcds + 1.

Lemma 3. A path c exists at the end of the first phase of the algorithm which
follows the property 1, binding each dominator to the leader L.

Proof. Let Dk be the set of dominators elected during or before the k round.
D0 = {L}. D0 comprises only one dominator following trivially the property 1.

Let assume that Dk follows the property 1. At the end of the k − 1th round,
a set Sk−1 of vertices was elected dominators, such that Sk−1 ∪ Dk−1 = Dk and
Sk−1 ∩ Dk−1 = ∅. A node N of Sk−1 is active during the k-1th round before
being elected at the end of the round. Let c1 =< N, a1, ...ai, d > be the path
from N to the nearest dominatee d during the round k − 1. N being active, by
construction, |c1| ≤ kcds + 1. The {al} are by definition not dominatees, and are
by construction at most kcds hops far from d, a dominatee. In consequence, {al}

About the Self-stabilization of a Virtual Topology for Self-organization 221

are active. Since N will be elected dominator, {al} will become its dominatees at
the end of the round. Let c2 =< d, d1, ...di, D > be the path from the dominatee
d to its parent D. By definition, D ∈ Dk, |c2| ≤ kcds, and dl are dominatees.
Since D ∈ Dk, let c3 =< D, ...,L > be the path from D to the leader. c3 follows
the property 1. Clearly, the path concatenation c1.c2.c3 follows the property 1
at the end of the first phase of the algorithm.

Lemma 4. If the property 1 is respected at the end of the first phase, the algo-
rithm will construct a connected kcds-DS.

Proof. Let Di be the set of dominators such that for each dominator D from
Di, the path c from D to the leader, following the property 1 has at most i
dominators. D0 = {L}. D0 forms a trivial connected kcds-DS applied to the
vertices dominated by D0. It will send, according to the construction algorithm,
a join-invite with a TTL=2 · kcds + 1.

Let assume that the set Di forms a connected kcds-DS. Let a dominator
u ∈ Di+1, and c be the path from u to the leader L, respecting the property 1.
c = 〈u, v1, ..., vk,L〉. From the lemma 3, there exists a dominator vi from c, at
most 2kcds+1 hops far from u since c respects the property 1. vi has a path c′ ⊂ c
respecting the property 1. Moreover, vi ∈ Di. Thus, vi will send a join-invite
with a TTL=2kcds+1. u will receive the join-invite, and will connect itself to
Di. In consequence, Di+1 forms a connected kcds-DS.

Formation of a Tree

Definition 1. Let the CDS GCDS containing all the vertices of G, and such
that an edge exists from a vertex u to a vertex v iif v is the parent of u if u is a
dominator, or iif v is the relay toward its dominator if u is a dominatee.

Theorem 3. GCDS is a tree.

Proof. According to the previous definition of Di, D0 = {L} is a trivial tree,
formed by a singleton. Let assume that Di forms a tree. Di has |Di − 1| edges. Let
u ∈ Di+1/Di. u will interconnect itself to the CDS thanks to a join-invite sent
by a dominator from Di. Let v be this dominator. The path c = 〈u, u1, ..., uk, v〉
has only dominatees, else u choosing the nearest dominator, will not interconnect
itself to v. In consequence, dominatees will become dominators. We add to Di a
branch of k dominatees and one dominator, with k edges from a dominatee to its
new parent, and an edge from u to its new parent. Thus, Di ∪ {u} ∪ {ui}i∈[1..k]

has |Di|− 1+1+ k edges, i.e.
∣∣∣Di ∪ {u} ∪ {ui}i∈[1..k]

∣∣∣− 1 edges. In consequence,
Di+1 is a tree.

Let di the set of dominatees at at most i hops from their father. When a
vertex d0 to D, the vertex and the edge toward its parent is added. Then, d0 ∪D
remains a tree.

Let di ∪ D be a tree. Let u ∈ di+1 be a dominatee. u chooses a parent and a
relay r toward this parent. r is one hop nearer from its parent, by construction.
Thus, r ∈ di. Only one vertex and one edge are added. di ∪ D is a tree. A

222 F. Theoleyre and F. Valois

dominatee being at most kcds hops far from its dominator,
⋃

i∈[1..kcds] di∪D = G.
In conclusion, the CDS forms a tree.

5.2 Maintenance

Dominating Set

Theorem 4. A dominatee has always a dominator, at most kcds hops far, i.e.
the CDS forms a kcds-DS.

Proof. Dominatees with a dominator neighbor choose it as parent. This domina-
tor is valid. Let assume that the set of dominatees at most i hops far from their
parent have a valid parent. A dominatee at most i + 1 hops far from its parent
has chosen it since it is at most kcds hops far, through another dominatee having
chosen the same dominator, but at i hops, with i < kcds. Thus, since the par-
ent of dominatees at most i hops far from their parent is valid, each dominatee
chooses a valid parent.

A dominatee can have no dominator candidate for reconnection in its neigh-
borhood table, i.e. no neighbor exists having chosen a dominator at most kcds-1
hops far. Such a dominatee becomes active. An active vertex becomes domina-
tee iif it finds a valid dominator as parent. Active vertices becoming dominators
execute the maintenance reserved for dominators. Thus, each dominatee has a
dominator at most kcds hops far, and this dominator is reachable through a
dominatee with the same dominator, one hop nearer from its parent.

Connectivity

Theorem 5. The set of dominators forms a tree.

Lemma 5. The set of dominators remains a (connected) tree when the radio
topology is stable.

Proof. Let assume that the topology is stable. Each dominator receives an
ap-hello, maintaining the source as parent. Let Di the set of dominators, i hops
far via other dominators from the leader, the root of the CDS. Di is supposed
connected. The vertices of Di+1/Di choose a parent in Di since they receive the
ap-hello from their parent, and so they are one hop farther from the leader.
Thus, Di+1 is connected.

Let assume Di has no cycle, Ei be the set of edges of Di, and Vi be the set
of its vertices.We can establish that |Ei| = |Vi − 1|. For each vertex of Di+1/Di,
we add one vertex in Ei and one edge in Vi. So :

|Ei+1| = |Vi| − 1 + [|Vi+1| − |Vi|] = |Vi+1| − 1

Thus Di+1 is connected, without any cycle.

Definition 2. We consider a dominator u connected iif there exists an ascen-
dant path directed from u to the leader L, where the first edge is (u, parent (u)),
and then constituted by the ascendant path 〈parent(u), ...,L〉.

About the Self-stabilization of a Virtual Topology for Self-organization 223

Lemma 6. When a dominator of a branch of the CDS reconnects itself, all its
ascendants and descendants reconnect themselves.

Proof. If a dominator u reconnects itself, then there exists a valid path 〈u, ...,L〉
to the leader. Besides, a descendant or an ascendant v of u has by definition a
path 〈u, ..., v〉. Thus, v has a path 〈u, ..., v〉∪〈u, ...,L〉 to the leader. However, all
dominators must perhaps change their parent to have a valid path to the leader.

Lemma 7. When all dominator of a branch are disconnected, at least one dom-
inator will reconnect itself.

Proof. Every topology change could be decomposed by an elementary addi-
tion/deletion of edges. The addition of an edge in the graph cannot generate
a disconnection in the CDS. Let assume that the edge (u, x) was deleted. After
a finite time Δt, the whole branch, i.e. the descendants of u, will consider it-
self disconnected. A dominator considers itself disconnected when it missed all
ap-hellos during Δt. Δt depends from the interval between two ap-hellos
and the number of acceptable missed ap-hellos. Let v be a dominator descen-
dant of u. u will not forward any ap-hello with an id superior to l, id of the
last ap-hello forwarded before the edge (u, x) broke. Thus, the child of u can-
not forward any ap-hello with an id superior to l. Recursively, v can neither
receive nor forward any ap-hello. The dominators of the branch of root u con-
sider themselves disconnected, and try to reconnect themselves via a dominator
forwarding an ap-hello with an id superior to l.

At least one dominator finalizes its reconnection, and no cycle is created in the
CDS, i.e. v cannot choose to reconnect itself to a descendant of u. Effectively,
v asks for an ap-hello id higher than the last ap-hello forwarded by any
descendant of u, as explained above. Let D be the set of descendant dominators
of u, and their dominatees (the disconnected part). D is a connected component.
Let C = G/D. C is also a connected component: let c ∈ L be a descendant of
L. c ∈ C is by definition not descendant of u. Thus u /∈ 〈c, ...,L〉, in other words
〈u, x〉 and 〈c, ...,L〉 are disjoint.

Let N be the set of vertices in C, neighbors of A. N �= ∅: let u ∈ D.
The graph is assumed connected. Thus, a path p = 〈u, u1, ...,L〉 exists with
u ∈ D and L ∈ C. ui ∈ p exists such that ui ∈ C and ui−1 ∈ D ∩ p. By
definition of N , ui ∈ N . Moreover, dominator(ui−1) is a dominator of the dis-
connected branch since ui−1 is in D. dominator(ui) is connected, and is in C.
d (dominant(ui−1), dominator(ui)) ≤ 2 · kcds + 1. Thus, a dominator at most
2kcds+1 hops far from a connected dominator exists in the disconnected branch.

Finally, dominator(ui−1) will reconnect itself to dominator(ui) thanks to a
cds-reconnect with a TTL=2kcds + 1. According to the lemma 6, each domi-
nator of D will reconnect itself and choose a new valid parent with an ap-hello.

In consequence, we can conclude:

Theorem 6. When an edge deletion implicates a disconnection in the CDS, the
CDS will reconstruct itself and a valid CDS will be created.

224 F. Theoleyre and F. Valois

Lemma 8. If a break of the CDS occurs, the branch is broken and then rebuilt.

Proof. The idle zone is a connected component of the graph. Since we consider
the events as discrete, the set of not idle nodes forms also a connected component,
comprising the leader L. Let u be a vertex not idle, neighbor of the idle area.
Such a vertex exists for the same reason as the lemma 7. Let i be in the idle zone,
and neighbor of u. Two cases exist. If u is a dominator, it will reconnect itself in
a finite time according to the theorem 6. If u is a connected dominator, it will
send a cds-invite with a TTL=kcds + 1. Clearly, i will receive this packet. If
u is a dominatee, dominator(u) will be in a finite time a connected dominator
for the same reason as above. For the same reason as above, dominator(u) will
send a cds-invite with a TTL=kcds + 1 and i will receive it.

A cds-invite received by the idle node i triggers the reconstruction of the
idle branch. i becomes the leader of the zone. The reconstruction leader i recon-
nects itself to dominator(u) in sending a cds-accept. dominator(u) being by
definition connected itself to the leader, i is transitively connected. Following a
proof similar to theorem 2, a CDS is reconstructed.

6 Cluster Self-stabilization

6.1 Construction

Theorem 7. The set of clusterheads constructs a kcluster-dominating set, i.e. a
kcluster-clustering.

Proof. If a dominator is not a clusterhead, then it chooses a dominator-cluster-
head according to the process of neighborhood discovering on the CDS topology.
cluster hellos are forwarded along the CDS-links, at most kcluster −kcds hops
far. So a dominator chooses a clusterhead at most kcluster − kcds < kcluster

hops far. Moreover, a dominator chooses as clusterhead the source of a cluster
hellos only if the previous hop chose also the source as clusterhead. Hence, the
cluster is connected.

A dominatee has the same clusterhead as its dominator. Moreover, according
to the lemma 2, it is at most kcds hops far from its dominator, itself kcluster−kcds

hops far from its clusterhead. Transitively, a dominatee is at most (kcluster −
kcds) + kcds = kcluster hops far from its clusterhead. Since a dominatee is con-
nected to its dominator through a path containing at most kcds dominatees
having chosen the same dominator, the cluster is connected.

According to the lemma 1, each vertex is either dominator or dominatee. In
consequence, any vertex has a clusterhead, at most kcluster hops far.

6.2 Maintenance

Theorem 8. The maintenance algorithm maintains a set of clusterheads form-
ing a kcluster-dominating set of GCDS.

Lemma 9. Dominators are at most kcluster hops far from their clusterhead.

About the Self-stabilization of a Virtual Topology for Self-organization 225

Proof. Let G′
CDS be the set of dominators having chosen the vertex C as clus-

terhead. There exists one edge in G′
CDS from u to v if v is the relay toward the

clusterhead for u. We can remark that such edges and vertices own to GCDS . If
v is at most H hops far from its clusterhead, u is at most H + 1 hops far from
its own clusterhead in G′

CDS and also in GCDS .
G′

CDS is a tree, i.e. no cycle exists in G′
CDS . Let assume the existence of a

cycle 〈u1, ..., uk〉. ui with i ∈ [1..k] is Hi hops far from C. u1 is the relay toward
the clusterhead of uk. So Hk = H1 + 1. In the same way, uj+1 being the relay
of uj for j ∈ [1..k − 1], Hj = Hj+1 + 1 ⇒ Hj < Hj+1. Thus, Hk = H1 + 1 and
H1 < Hk, this leads to a contradiction. G′

CDS is a tree, a dominator chooses a
relay one hop nearer of the clusterhead C.

Let Di be the set of dominators which set the field distance to clusterhead
to i in their hellos. Any dominator of Di chooses by construction a relay in
Di−1. Let assume that the vertices in Di−1 are i− 1 hops far from C. Thus, the
vertices of Di are i hops far from C. Moreover, D0 = C and C is 0 hops far from
itself. Finally, a dominator is allowed to choose a relay only if this relay is at
most kcluster − kcds hops far from its clusterhead. Thus, Dkcluster−kcds

= ∅. A
dominator has either a clusterhead at most kcluster − kcds hops far, or becomes
its own clusterhead.

Lemma 10. Dominatees are at most kcluster hops far from their clusterhead.

Proof. This result holds for the same reasons as in the theorem 7.

7 Performance Evaluation

We simulate our solution with OPNET Modeler 8.1, using the WIFI standard
model (300m radio range). The default parameters are 40 nodes and a degree of
10. The 95% confidence intervals are reported on the figures.

General Performances. Figure 1 presents the general performances of the CDS,
without mobility. The cardinality is stable and scalable according to the number
of nodes. The connectivity is not 100% since packet collisions may occur. How-
ever, it remains over 99.5%. Algorithms for both the CDS and the clusters seem
present a good horizontal scalability, i.e. according to the cardinality.

 10

 12

 14

 16

 18

 20

 22

 10 20 30 40 50 60 70 80 90 100
 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

R
at

io
 o

f C
lu

st
er

he
ad

s
(%

)

C
on

ne
ct

iv
ity

 (
%

)

Number of nodes

Ratio of clusterheads
Cluster connectivity

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60 70 80 90 100
 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

R
at

io
 o

f d
om

in
at

or
s

(%
)

C
on

ne
ct

iv
ity

Number of nodes

CDS cardinality kcds=1
CDS cardinality kcds=2

CDS connectivity kcds=1
CDS connectivity kcds=2

Fig. 1. Impact of the number of nodes

226 F. Theoleyre and F. Valois

Convergence of the Construction Algorithm. We investigate the convergence
time of the algorithm for the CDS construction. The clusters are always well-
constructed before the end of the CDS construction. In consequence, the clusters
are robust and don’t represent the more sensitive part of the virtual structure.
Thus, no simulation result about the convergence of clusters are given here, the
convergence being too fast.

Approximately 5 seconds are needed to have no idle node in the networks
with kcds=1 and kcluster=2 (fig. 2). Two supplementary seconds are necessary
for the election, i.e. no active node remains in the network. Finally, less than
10 seconds are necessary to have a CDS largely connected or strictly connected.
Strictly connected means that the tree relation (node→parent) creates a valid
Connected Dominating Set. For a largely connected CDS, we take into account
the redundant mesh structure of the CDS (edges between each backbone neigh-
bor and each dominatee with the same parent). The construction algorithms,
executed in parallel for the first and second phases seem efficient: they con-
verge quickly, forming in a few seconds an operational and self-organized ad hoc
network. Results are little higher but similar for kcds=2 and kcluster=3.

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90 100

C
on

ve
rg

en
ce

 ti
m

e
(in

 s
ec

on
ds

)

Number of nodes

Before no idle node
Before no active node

Before a large CDS
Before a strict CDS

Fig. 2. Convergence Time for a CDS
(kcds=1 / kcluster=2)

 0

 0.5

 1

 1.5

 2

 2.5

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 s

ta
te

 c
ha

ng
es

 p
er

 n
od

e
be

fo
re

 a
 c

on
ne

ct
ed

 C
D

S

Number of nodes

DOMINATOR
DOMINATEE

ACTIVE
IDLE

Fig. 3. Ratio of the number of cds state
changes and the number of nodes be-
fore having a connected CDS (kcds=1 /
kcluster=2)

In figure 3 is represented the number of state changes to have a valid CDS
with kcds=1 and kcluster=2. More precisely, we measure the number of times a
node changes its state before having a valid CDS. For example, with 100 nodes,
70% of the nodes become active, 80% dominatee and 35% dominators. During
the first phase, among the active nodes, some nodes are elected dominators, and
some other become dominatees. In the second phase, some dominatees become
dominators to have a connected structure. In conclusion, a node changes its
cds-state in average 2 times so that the structure becomes valid. Moreover, the
number of changes per node is stable according to the number of participants.

Finally, the behavior of the structure was studied during the time (fig. 4).
With a network of 50 nodes, kcds=1 and kcluster=2, idle and active nodes are
only present during the construction part, in the very first seconds. Dominators
are elected but, being redundant, they become dominatees after a few seconds.

About the Self-stabilization of a Virtual Topology for Self-organization 227

During the maintenance, the structure is very stable: the number of dominators
and dominatees is almost the same during all the simulation. Slight variations
appear because of packet collisions: some hello or ap-hello packets are lost.
The nodes believe that a topology change occurs in the neighborhood.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 30 31 32 33 34 35

N
um

be
r

of
 n

od
es

Time (in seconds)

Number of idle nodes
Number of active nodes

Number of dominator nodes
Number of dominatee nodes

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 100 200 300 400 500 600
N

um
be

r
of

 n
od

es
Time (in seconds)

Number of idle nodes
Number of active nodes

Number of dominator nodes
Number of dominatee nodes

Fig. 4. Number of idle/active/dominator/dominatee nodes during a 600s simulation
(kcds=1 / kcluster=2 / 50 nodes)

Temporary Failure. We simulate a temporary failure: a dominatee becomes ar-
bitrarily dominator, or a dominator becomes arbitrarily dominatee (fig. 5). This
simulates a node failure (after for example a power-off). We can remark that the
convergence time is inferior to 3s for a dominator if the CDS is required to be
strictly connected. If the CDS must be only largely connected (which is the case
for flooding applications), the convergence time is inferior to 1.2 seconds. The
convergence time is longer when kcds=3 because of reconnection complexity.

 0

 1

 2

 3

 4

 5

 6

AnyDominateeDominator

T
im

e
of

 r
ec

on
ne

ct
io

n
(s

ec
on

ds
)

Type of failure

Large reconnection (kcds=1 kcluster=2)
Strict reconnection (kcds=1 kcluster=2)

Large reconnection (kcds=2 kcluster=3)
Strict reconnection (kcds=2 kcluster=3)

 0

 0.5

 1

 1.5

 2

AnyDominateeDominator

C
um

ul
at

iv
e

nu
m

be
r

of
 s

ta
te

 c
ha

ng
es

Type of failure

kcds=1

kcds=2

kcluster=2

kcluster=3

kcds=1

kcds=2kcluster=2

kcluster=3 kcds=1

kcds=2

kcluster=2

kcluster=3

DOMINATOR
DOMINATEE

ACTIVE
IDLE

Fig. 5. Reconnection Time and number of changes after a temporary failure

8 Conclusion

In this article, we propose the construction and the maintenance of a virtual
structure for the self-organization of ad hoc networks. A backbone helps to col-
lect the traffic control and to distribute it efficiently in the network. Clusters
create a hierarchical organization of the ad hoc networks, clusterheads manag-
ing their cluster, i.e. their services area. The construction algorithms are proven

228 F. Theoleyre and F. Valois

to construct a Connected Dominating Set and a clustering scheme in any ad
hoc network. The complexity in messages is reduced, which represents a re-
quired property in wireless networks. Moreover, ad hoc networks present a very
volatile topology. In consequence, maintenance is vital. The proposed algorithms
are proven to be self-stabilizing if topology changes occur in the network. Both
the construction and the maintenance are time-bounded. The virtual structure is
studied trough simulations. The cardinality and connectivity of the structures re-
main very stable. Moreover, the structure is constructed efficiently and quickly.
When a temporary failure occurs, the maintenance algorithms reconnect the
structure in a very small delay, and only a few nodes are impacted by changes.
A local topology change impacts only locally the structure. This explains the
good scalability of the virtual structure. The proposed virtual structure for self-
organization is proven to be self-stabilized. In consequence, such a scheme is
very flexible and totally parameterizable. It constitutes a genuine framework to
deploy efficiently new services in ad hoc networks: routing could be deployed on
this self-organization, taking into account the natural scalability of the virtual
structure.

References

1. K. Alzoubi, P-J. Wan, and O. Frieder. New distributed algorithm for connected
dominating set in wireless ad hoc networks. In Hawaii International Conference
on System Sciences (HICSS), Big Island, USA, January 2002. IEEE.

2. Sergiy Butenko, Xiuzhen Cheng, Ding-Zhu Du, and Panos M. Pardalos. On the con-
struction of virtual backbone for ad hoc wireless networks. In Cooperative Control:
Models, Applications and Algorithms, pages 43–54. Kluwer Academic Publishers,
2003.

3. Mihaela Cardei, Xiaoyan Cheng, Xiuzhen Cheng, and Ding-Zhu Du. Connected
domination in ad hoc wireless networks. In International Conference on Computer
Science and Informatics (CSI), North Carolina, USA, March 2002.

4. E.W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17(11):643–644, November 1974.

5. Sandeep K. S. Gupta and Pradip K. Srimani. Self-stabilizing multicast protocols
for ad hoc networks. Journal of Parallel and Distributed Computing, 63(1):87–96,
2003.

6. Chunhung Richard Lin and Mario Gerla. Adaptive clustering for mobile wireless
networks. IEEE Journal of Selected Areas in Communications, 15(7):1265–1275,
1997.

7. Marco Schneider. Sef-stabilization. ACM Computing Surveys, 25(1):45–67, March
1993.

8. Fabrice Theoleyre and Fabrice Valois. A virtual structure for mobility manage-
ment in hybrid networks. In Wireless Communications and Networking Conference
(WCNC), volume 5 of 1, pages 1035–1040, Atlanta, USA, March 2004. IEEE.

9. Fabrice Theoleyre and Fabrice Valois. About the self-stabilization of a virtual
topology for self-organization in ad hoc networks. Research Report, INRIA, August
2005.

10. Jie Wu and Fei Dai. Distributed dominant pruning in ad hoc wireless networks. In
International Conference on Communications (ICC), pages 353–357, Anchorage,
USA, May 2003. IEEE.

Author Index

Bein, Doina 1
Boulinier, Christian 18

Cournier, Alain 33

Daliot, Ariel 48
Datta, Ajoy K. 1
Delaët, Sylvie 68
Devismes, Stéphane 33
Dhama, Abhishek 198
Dolev, Danny 48
Dolev, Shlomi 81, 96, 113
Ducourthial, Bertrand 68

Freiling, Felix C. 128

Ghosh, Sukumar 128
Gouda, Mohamed G. 140

Haviv, Yinnon 81
Hutle, Martin 153

Jung, Eunjin (EJ) 140

Kakugawa, Hirotsugu 183
Kiniwa, Jun 171

Lahiani, Limor 96
Lynch, Nancy 96

Masuzawa, Toshimitsu 183

Nolte, Tina 96

Oehlerking, Jens 198

Petit, Franck 18

Sagiv, Mooly 81

Theel, Oliver 198
Theoleyre, Fabrice 214
Tixeuil, Sébastien 68

Valois, Fabrice 214
Villain, Vincent 1, 18, 33

Widder, Josef 153

Yagel, Reuven 113

	Frontmatter
	Snap-Stabilizing Optimal Binary Search Tree
	Synchronous vs. Asynchronous Unison
	A Snap-Stabilizing DFS with a Lower Space Requirement
	Self-stabilization of Byzantine Protocols
	Self-stabilization with r-Operators Revisited
	Self-stabilization Preserving Compiler
	Self-stabilizing Mobile Node Location Management and Message Routing
	Memory Management for Self-stabilizing Operating Systems
	Code Stabilization
	Stabilizing Certificate Dispersal
	On the Possibility and the Impossibility of Message-Driven Self-stabilizing Failure~Detection
	Approximation of Self-stabilizing Vertex Cover Less Than 2
	Self-stabilization in Spite of Frequent Changes of Networks: Case Study of Mutual Exclusion on Dynamic Rings
	Towards Automatic Convergence Verification of Self-stabilizing Algorithms
	About the Self-stabilization of a Virtual Topology for Self-organization in Ad Hoc Networks
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

